

e-session 575

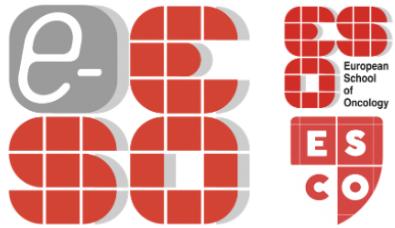
Hypofractionation in breast cancer RT

Expert: **Prof Philip Poortmans**, GZA Ziekenhuizen Campus Sint-Augustinus and Antwerp University, Antwerp, Belgium

Discussant: **Prof Pierfrancesco Franco**, University of Eastern Piedmont, Novara, Italy

Discussant: **Prof Icro Meattini**, Florence University, Florence, Italy

Extract from the e-ESO policy


The website contains presentations aimed at providing new knowledge and competences, and is intended as an informational and educational tool mainly designed for oncology professionals and other physicians interested in oncology. These materials remain property of the authors or ESO respectively.

ESO is not responsible for any injury and/or damage to persons or property as a matter of a products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material published in these presentations. Because of the rapid advances in medical sciences, we recommend that independent verification of diagnoses and drugs dosages should be made. Furthermore, patients and the general public visiting the website should always seek professional medical advice.

Finally, please note that ESO does not endorse any opinions expressed in the presentations.

To share your e-eso experience use:

#e_ESO

e-Sessions via e-ESO.net
Your free education is just a click away!
©2021 The European School of Oncology

Hypofractionation for breast cancer RT.

Current trends

Philip Poortmans, MD, PhD
Iridium Netwerk & Antwerp University, Antwerpen (B)

Former President

EUROPEAN CANCER ORGANISATION

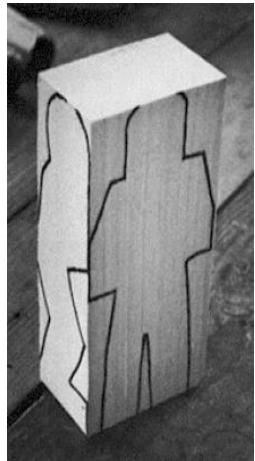
Disclosures:

Medical advisor of Sordina IORT Technologies spa

Hypofractionation in breast RT

1. Introduction

2. Evidence


3. Discussion

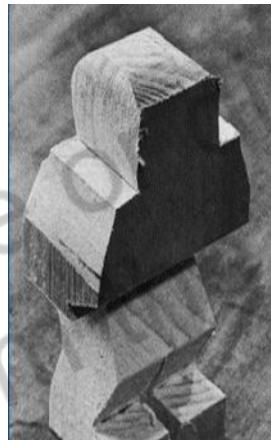
4. Conclusions

Do not duplicate or distribute without
permission from the author and ESO

Hypofractionation in breast RT: *Introduction*

RT

3D-RT


IMRT

IG-RT

IG-IMRT

3D-IG-IMRT

SRS

S-RT

S-IMRT

S-hRT

S-IG-IMRT

S-h-IG-IMRT

Hypofractionation in breast RT: *Introduction*

20th century: Field-based RT

RT 2D; 3D; ... static IMRT

21st century: Volume-based RT

IMRT; VMAT

Evolution → RT adaptive: Volumes

Movements

Functional/biology

Seymour H. Levitt

James A. Purdy

Carlos A. Perez

Philip Poortmans

Editors

Technical Basis of Radiation Therapy

Practical Clinical Applications

Fifth Edition

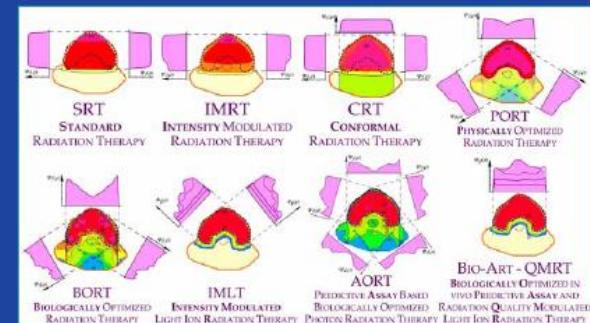
A.L. Baert

M.F. Reiser

H. Hricak

M. Knauth

Levitt · Purdy · Perez
Poortmans *Eds.*


This well-received book, now in its fifth edition, is unique in providing a detailed description of the technological basis of radiation therapy. Another novel feature is the collaborative writing of the chapters by North American and European authors. This considerably broadens the book's perspective and increases its applicability in daily practice throughout the world. The book is divided into two sections. The first covers basic concepts in treatment planning, including essential physics and biological principles related to time-dosefractionation, and explains the various technological approaches to radiation therapy, such as intensity-modulated radiation therapy, tomotherapy, stereotactic radiotherapy, and high and low dose rate brachytherapy. Issues related to quality assurance, technology assessment, and cost-effectiveness are also reviewed. The second part of the book discusses the practical clinical applications of the different radiation therapy techniques in a wide range of cancer sites. All of the chapters are written by leaders in the field. This book will be of great value to medical students, residents, and practitioners who are interested in the basic technological factors of radiation therapy.

Techniques serve the goal – not the other way around!

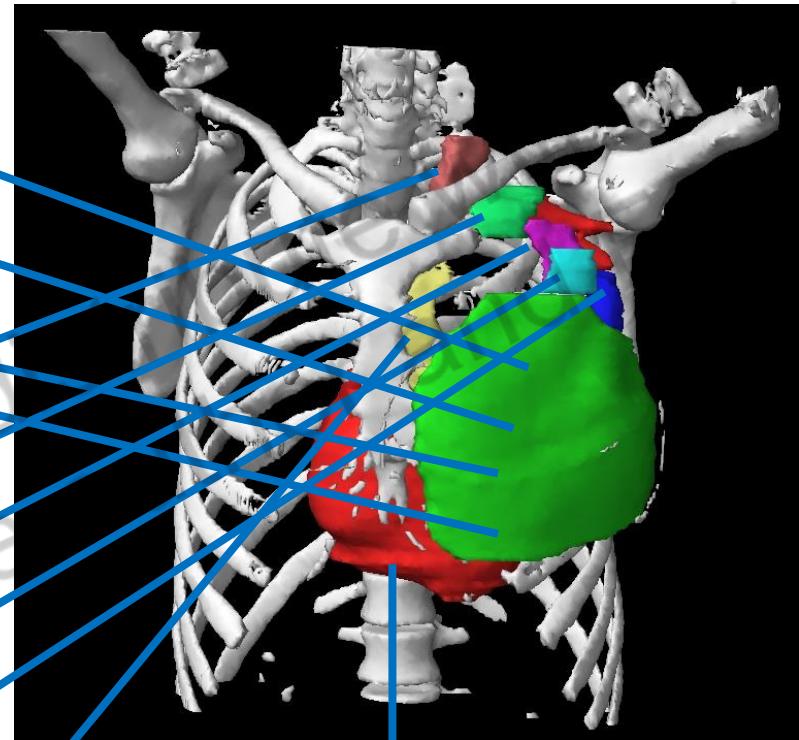
Radiation Therapy

5th Ed.

Springer

ISSN 0942-1295
ISBN 978-3-642-11157-1
9 783642 111571

springer.com

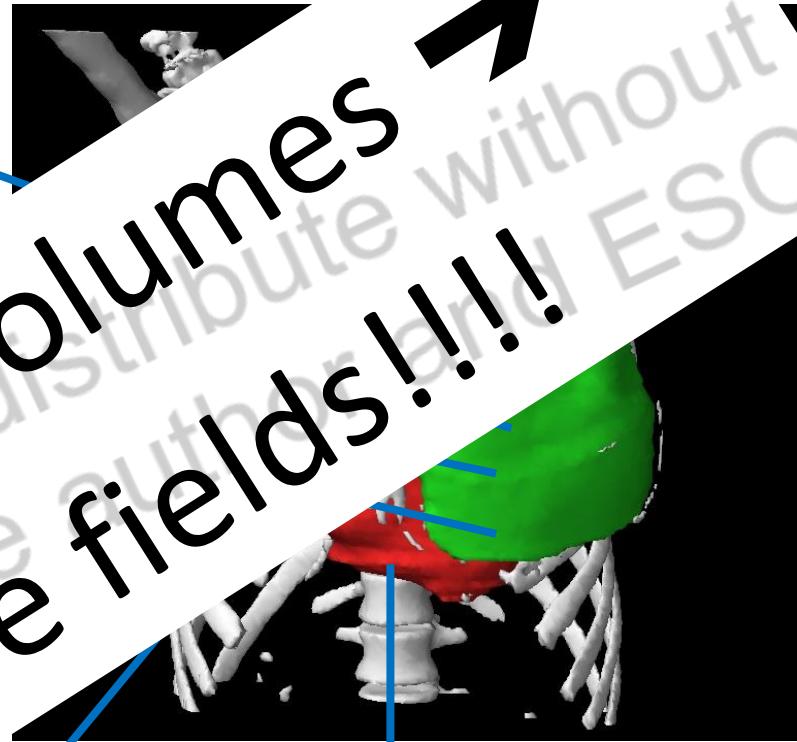

Hypofractionation in breast RT: *Introduction*

Contemporary radiation therapy

Do not duplicate or distribute without
permission from the author and ESO

Hypofractionation in breast RT: *Introduction*

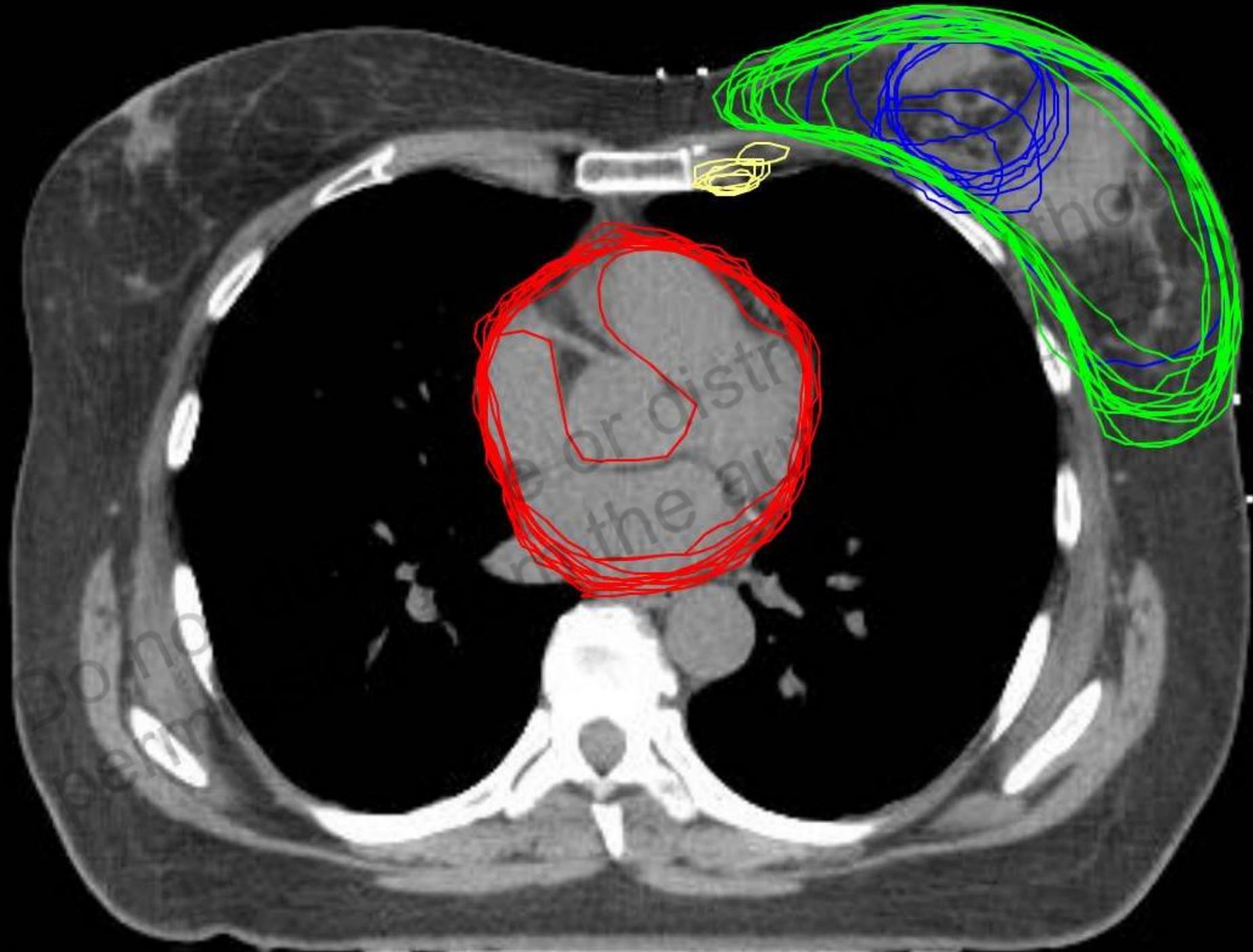
- Breast
- Boost
- PBI
- Thoracic wall
- LN supraclavicular
- LN axilla level III
- LN axilla level II
- LN axilla Rotter
- LN axilla level I
- LN internal mammary



Heart

Hypofractionation in breast RT: *Introduction*

- Breast
- Boost
- PBI
- Thoracic wall
- LN supraclavicular
- LN axilla
- LN mediastinal
- Summary

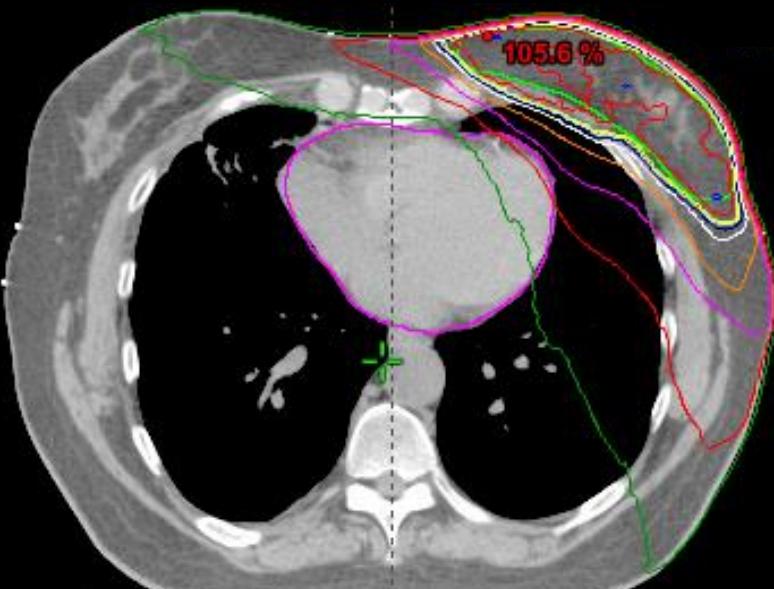

**It's all about volumes
Forget the fields!!!!**

Heart

Hypofractionation in breast RT: *Introduction*

Hypofractionation in breast RT: *Introduction*

Free breathing




Breath Hold

3D-CRT

4IMRT

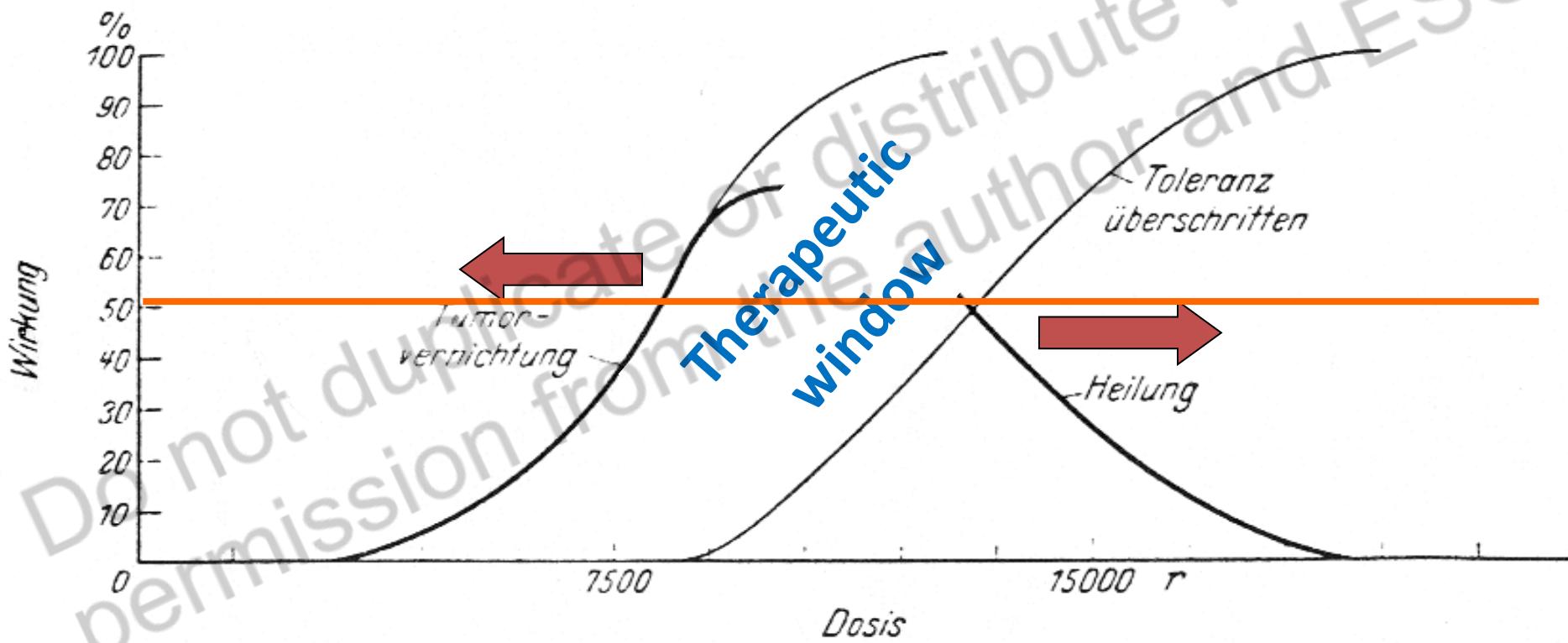
Hypofractionation in breast RT

1. Introduction

2. Evidence

3. Discussion

4. Conclusions


Do not duplicate or distribute without
permission from the author and ESO

Hypofractionation in breast RT: Evidence

Erfahrungen über die Verträglichkeitsgrenze
für Röntgenstrahlen und deren Nutzanwendung
zur Verhütung von Schäden*).

Von
H. Holthusen, Hamburg.

Hypofractionation ?

*) Vortrag vor der Deutschen Röntgengesellschaft am 24. April 1936

Hypofractionation in breast RT: *Evidence*

- Total dose
- Dose per fraction
- Overall treatment time
- Time interval between fractions
- Volume

Hypofractionation in breast RT: *Evidence*

1×10 Newton
 1×20 Gy

\neq

10×1 Newton
 10×2 Gy

Hypofractionation in breast RT: Evidence

Ellis' NSD

DOSE, TIME AND FRACTIONATION: A CLINICAL HYPOTHESIS

FRANK ELLIS

From the Radiotherapy Department, The Churchill Hospital, Oxford

Based on published clinical results of radiotherapy, a formula is suggested which relates total dose, number of fractions and overall treatment time to a quantity termed 'Nominal Standard Dose'. This quantity represents the biological effect of a given treatment regime. Using this concept it is possible to compare various treatment schedules that involve different fractionation patterns and various overall treatment times. The evidence upon which the idea is based, and also its use in routine clinical practice, are discussed.

Hypofractionation in breast RT: Evidence

Ellis' NSD - Late effects

Innstilling fra sosialkomiteen om erstatning ved stråleskader etter brystkrefthandtering ved Radiumhospitalet i årene 1975-86.

Innst. S. nr. 41 (1998-99)

Kjelde: St.prp. nr. 3 (1998-99)

Dato: 26.11.1998

Utgiver: Sosialkomiteen

Norway: 43 Gy / 10 fr:

85×10^6 NKR (12×10^6 euro)

Strålskadade får dela på 30 miljoner

SVT Nyheter

Publicerad 10 november 2005 - 17:55

Uppdaterad 20 juni 2006 - 11:26

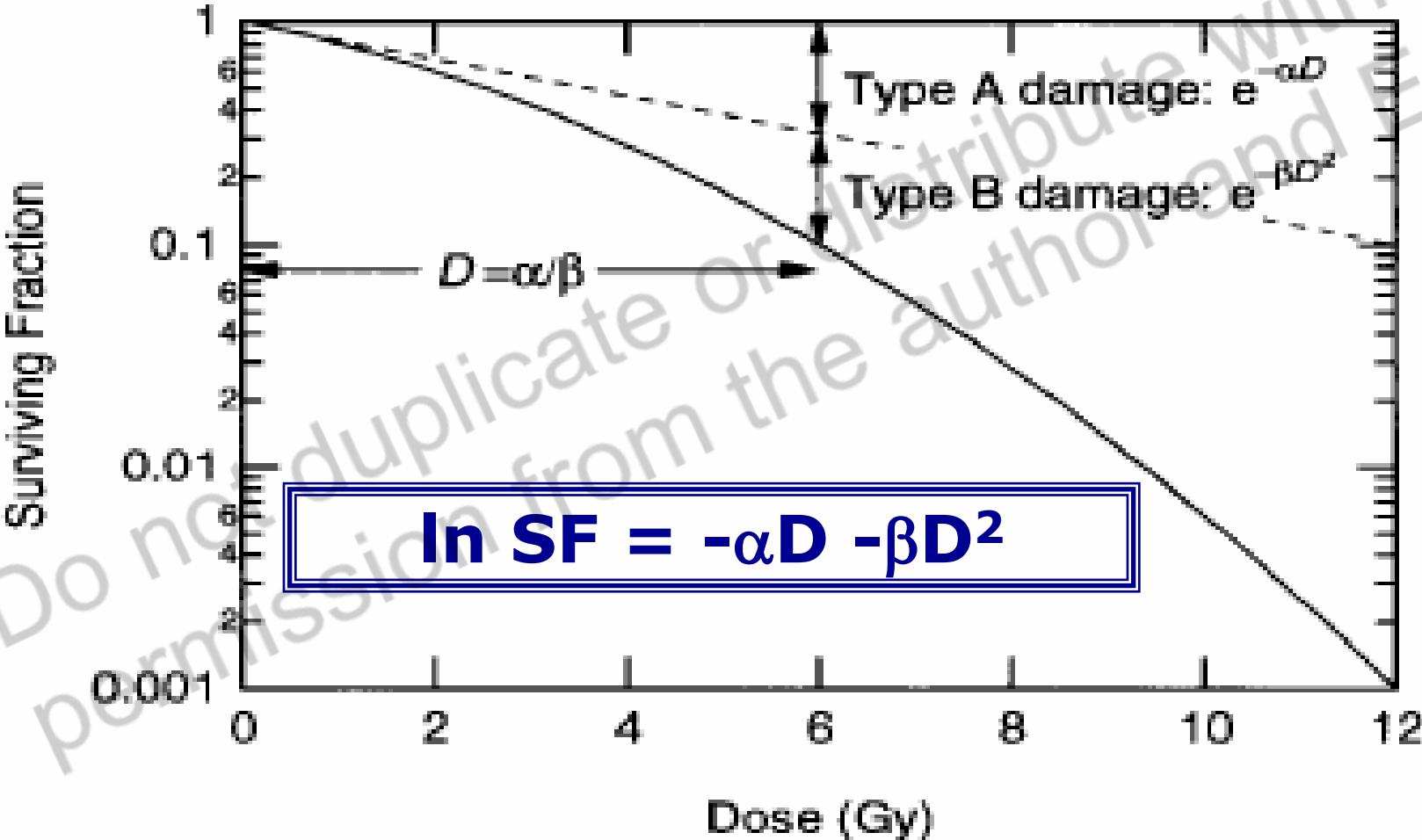
De strålskadade kvinnor som aktuellt har berättat om flera reportage får nu ersättning från landstingen. De får dela på sammanlagt 30 miljoner kronor.

Sweden:

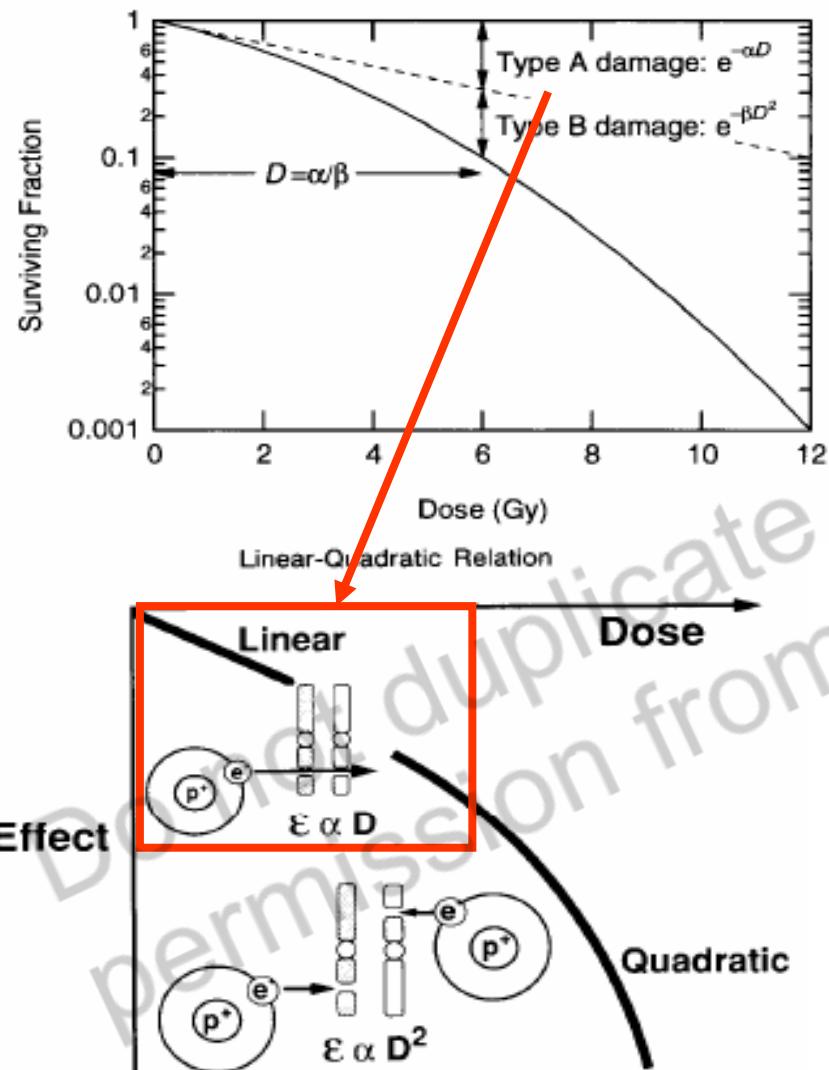
30×10^6 NKR (4×10^6 euro)

Hypofractionation in breast RT: Evidence

The LQ model (α/β)


The Effect of Multiple Small Doses of X Rays on Skin Reactions in the Mouse and a Basic Interpretation

B. G. DOUGLAS¹ AND J. F. FOWLER

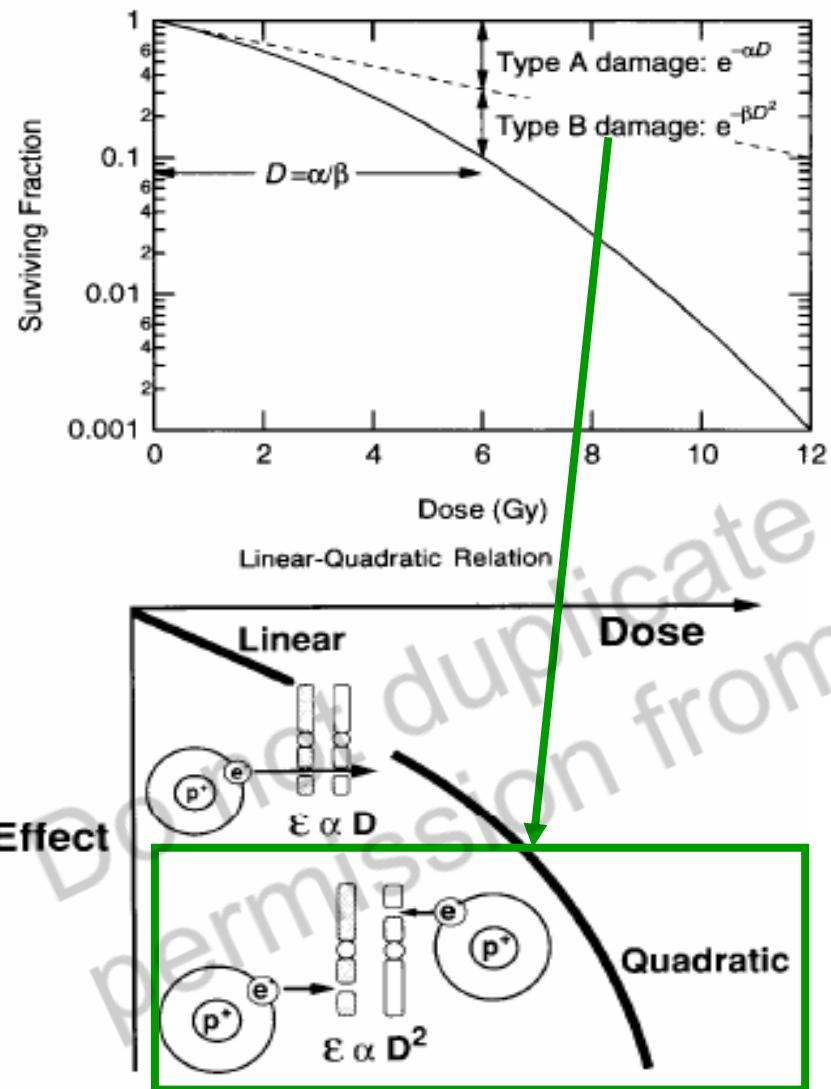

Gray Laboratory of the Cancer Research Campaign, Mount Vernon Hospital, Northwood, Middlesex, HA6 2RN, England

Hypofractionation in breast RT: Evidence

The LQ model (α/β)

Hypofractionation in breast RT: Evidence

$$\ln SF = -\alpha D - \beta D^2$$

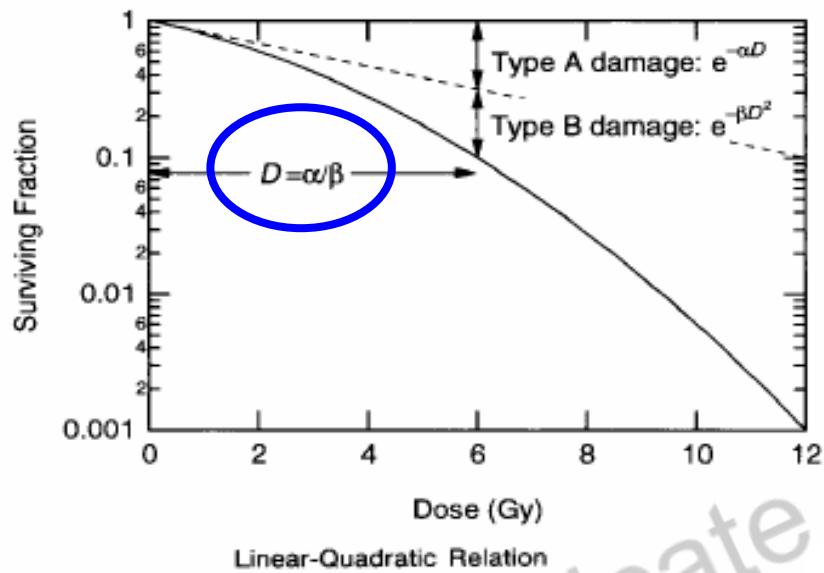

αD :

- linear component

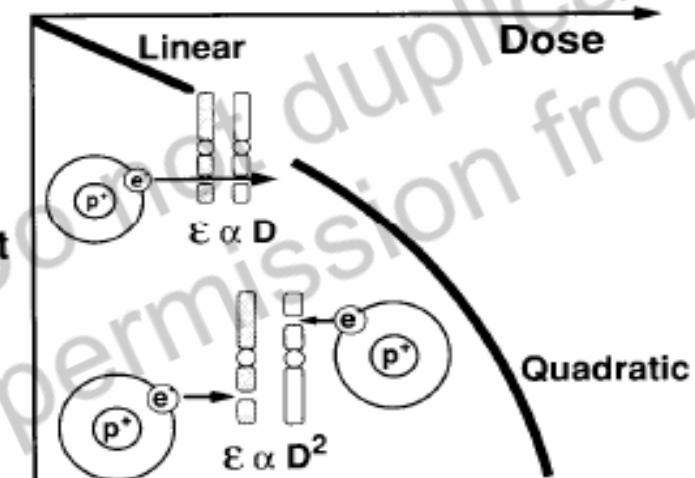
(start of the cell survival curve)

- ionizing radiation event simultaneously damaging two individual targets
- non-repairable damage

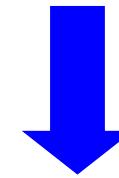
Hypofractionation in breast RT: Evidence



$$\ln SF = -\alpha D - \beta D^2$$


βD^2 :

- quadratic component
(final bending of the curve)
- two ionizing events that damage two targets separately
- sublethal damage


Hypofractionation in breast RT: Evidence

$$\ln SF = -\alpha D - \beta D^2$$

When $e^{-\alpha D} = e^{-\beta D^2}$

$$D = \alpha/\beta!$$

Hypofractionation in breast RT: *Evidence*

The α/β relationship shows how tissues react to changes in fractionation: "sensitivity to fractionation"

Hypofractionation in breast RT: Evidence

It is important to recognize that the α/β ratio is not constant and that its value should be chosen carefully to match the specific tissue in question

Hypofractionation in breast RT: *Evidence*

Tissue/organ	End-point	α/β (Gy)	95% conf. lim. (Gy)	Reference
Early reactions				
Skin	Erythema	8.8		
	Erythema	12.3		
	Desquamation	11.2		
Oral mucosa	Mucositis	9.3		
	Mucositis	15		
	Mucositis	~8		
Late reactions				
Skin/vasculature	Telangiectasia	2.8	[1.7; 3.8]	Turesson and Thames, 1989
	Telangiectasia	2.6	[2.2; 3.3]	Bentzen <i>et al</i> 1990
	Telangiectasia	2.8	[1.0 - 8.1]	Bentzen and Overgaard, 1991
Subcutis	Fibrosis	1.7		
Muscle/vasculature/ cartilage	Impaired shoulder movement	3.5		
Nerve	Brachial plexopathy	<3.5*	[~7; 10]	Jiang <i>et al</i> , 1994
	Brachial plexopathy	~2	N/A	Dische <i>et al</i> , 1981
	Optic neuropathy	1.6	[~4; 10]	Jiang <i>et al</i> , 1994
Spinal cord	Myelopathy	<3.3	±0.7	Deore <i>et al</i> , 1993
Eye	Corneal injury	2.9	±1.5	van Dyk <i>et al</i> , 1989
Bowel	Stricture/perforation	3.9	[~0.2; 8.5]	Dubray <i>et al</i> , 1995
Lung	Pneumonitis	3.3	±1.2	Rezvani <i>et al</i> , 1991
Head and neck	Fibrosis (radiological)	3.1	[0.8; 14]	Maciejewski <i>et al</i> , 1986
Supraglottic larynx	Various late effects	3.5	[~0.6; 2.5]	Maciejewski <i>et al</i> , 1990
Oral cavity + oroph.	Various late effects	3.8		
	Various late effects	0.8		
Tumours				
Head and neck		14.5*	±4.9	Rezvani <i>et al</i> , 1993
Larynx		~13	wide	Robertson <i>et al</i> , 1993
Vocal cord		~16*	N/A	Horiot <i>et al</i> , 1992
Oropharynx		6.6		
Buccal mucosa		7.2		
Tonsil		16		
Nasopharynx		8.5*		
Skin		0.6		
Melanoma		0.4		
Liposarcoma				
High ~ 10				
Low ~ 1 - 3.5				
High ~ 10				
Thames and Suit 1980				

Hypofractionation in breast RT: *Evidence*

Clinical data from multiple institutions support that breast and prostate cancer have a low ratio ($\leq 3-4$) of α/β , favouring hypofractionation.

Hypofractionation in breast RT: Evidence

Everything depends on the assumption that the α / β of the tumour is very low

Trials START → α/β of tumour ~ 4-5 Gy

α/β	39/13	40/15	50/25
1.8	49.3	47.1	50
2	48.8	46.7	50
3	46.8	45.4	50
4	45.5	44.7	50
6	43.9	43.4	50
8	42.9	42.7	50
10	42.3	42.2	50

Hypofractionation in breast RT: *Evidence*

The LQ model (α/β)

If the α/β of the tumour $>$ α/β of late side effects

+

treatment prescription adapted to late side effects

we must accept to under-dose the tumour!

Conclusion:

Even using hypofraction safely, the therapeutic ratio always drops

Hypofractionation in breast RT: Evidence

The LQ model (α/β)

If the α/β of the tumour $>$ α/β of late side effects

+

treatment prescription adds

we m

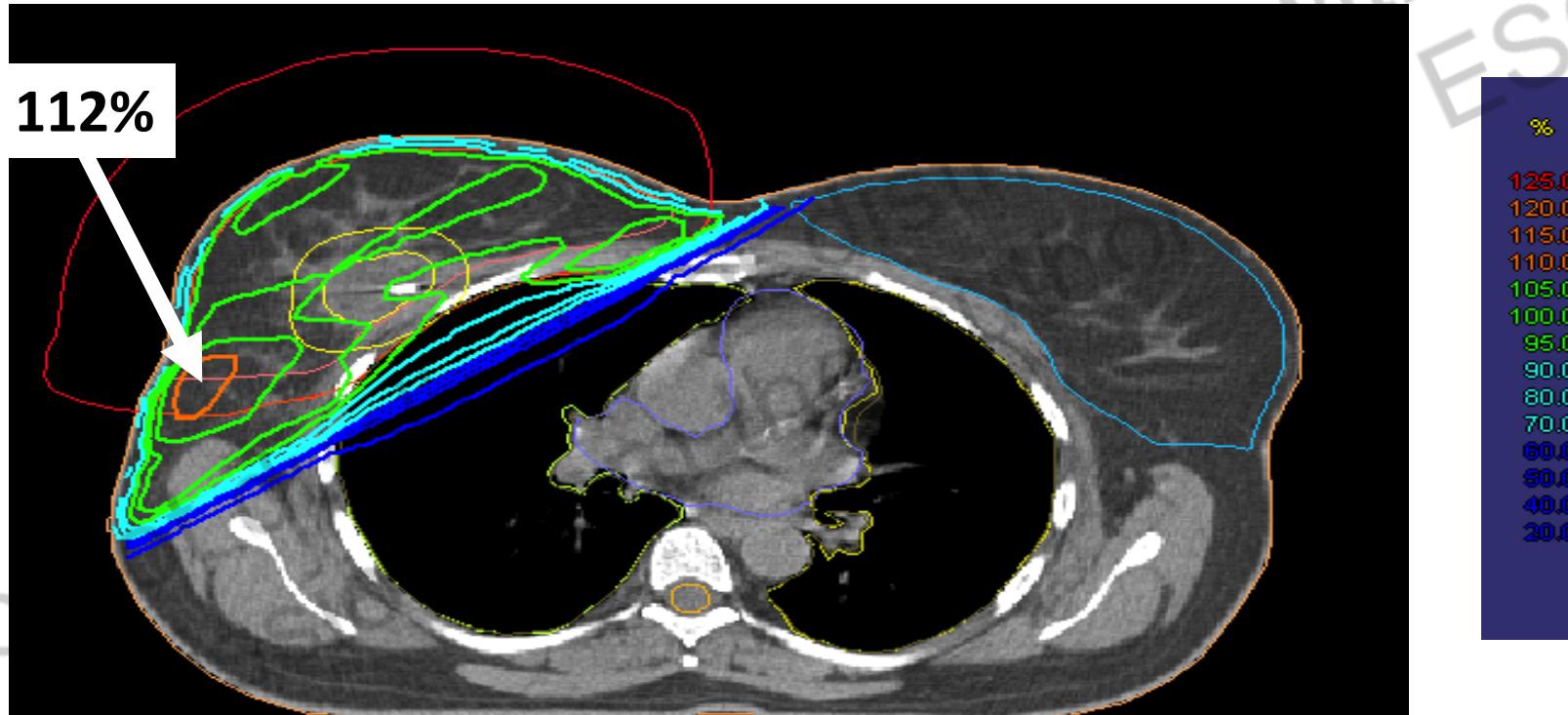
But is this true?????

under-dose the tumour!

Conclusion:

Even using hypofraction safely, the therapeutic ratio always drops

Hypofractionation in breast RT: Evidence


Is the α/β for breast cancer really low?

Data from:	α/β (Gy)	95% CL: 0.75-5.01
Whelan 2002	3.21	
Owen 2006	4.39	
Shelly 2000	2.21	
Start A 2008	3.91	
Start B 2008	2.49	
Clark 1996	1.44	
Arriagada 1985	3.89	

→ Many clinical data support that breast cancer has a low α/β ratio, thereby supporting the use of HypoF

Hypofractionation in breast RT: Evidence

Physics aspects related to HF: HypoF: be careful with treatment planning

→ Subdoses and overdoses are more important for late effects with hypofractionation

Hypofractionation in breast RT: Evidence

Physics aspects related to HF:

HipoF: be careful with treatment planning

If we increase the fraction size:

→ *we must lower the total dose....*

Importance of high dose points in a treatment plan:

→ *higher dose + higher fractional dose*

„Double trouble“ (Withers 1992)

High dose points in HypoF RT:

→ *penalized with greater severity: higher dose + high dose points = 2x higher dose per fraction*

→ TRIPLE TROUBLE

Hypofractionation in breast RT: Evidence

Physics aspects related to HF:

HipoF: be careful with treatment planning

If we increase the fraction size:

→ *we must lower the total dose.*

Importance of high dose

→ *higher dose*

points in HypoF RT:

penalized with greater severity: higher dose + high dose points = 2x higher dose per fraction

→ TRIPLE TROUBLE

Hypofractionation in breast RT: Evidence

Inhomogeneity of the dose in the breast	Equivalent total dose (Gy) if $\alpha/\beta=3$ Gy, using fractions of...		
	2Gy	4Gy	6Gy
100 %	50.0	50.0	50.0
105 %	53.6	54.0	54.3

‘double trouble’

‘triple trouble’

Hypofractionation in breast RT: Evidence

Inhomogeneity of the dose in the breast

Equivalent total dose
 $\alpha/\beta=3$ Gy

The "triple trouble" is also not a concern in patients with large breasts

50.0
54.0 → 54.3

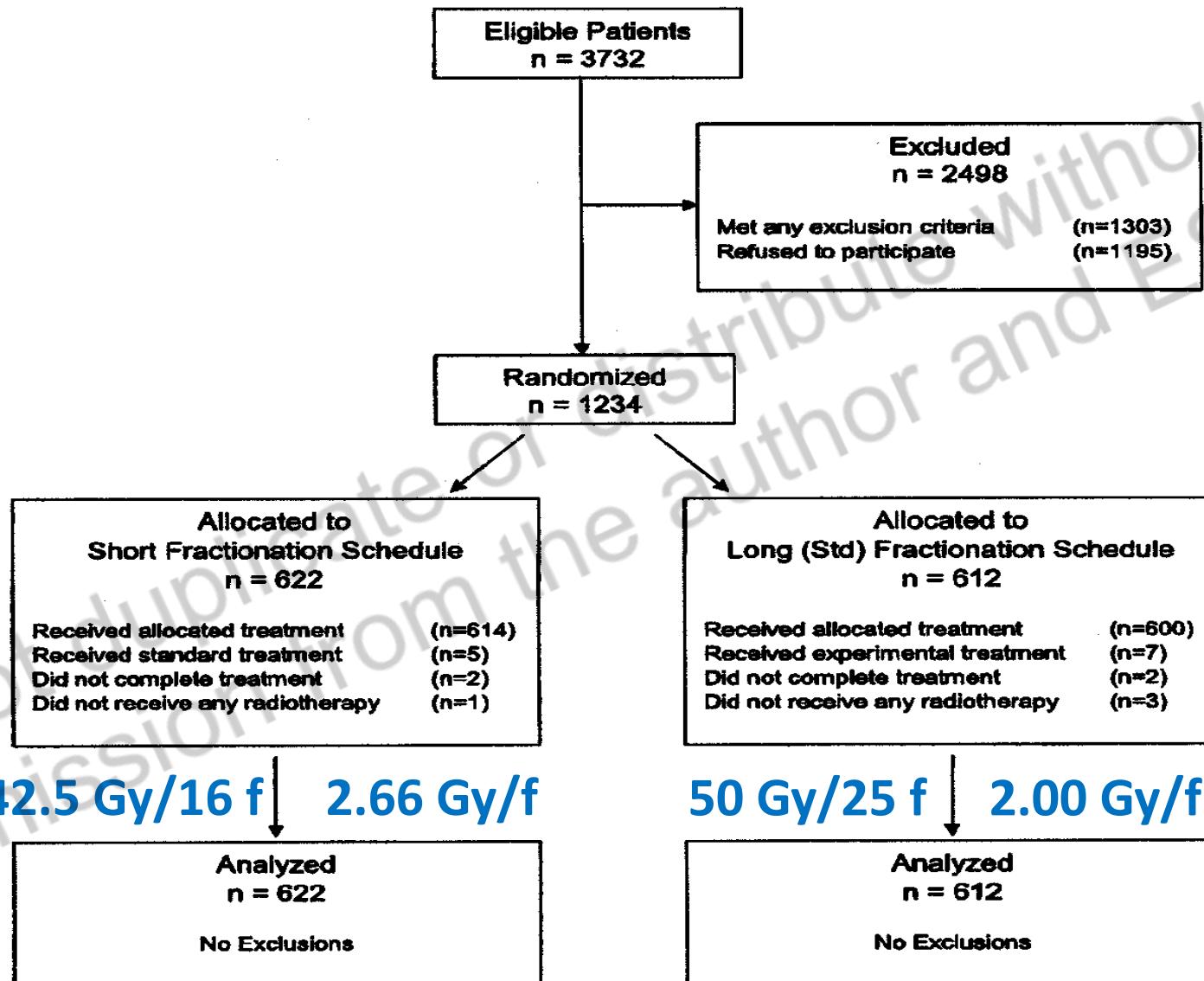
‘double trouble’

‘triple trouble’

Hypofractionation in breast RT: Evidence

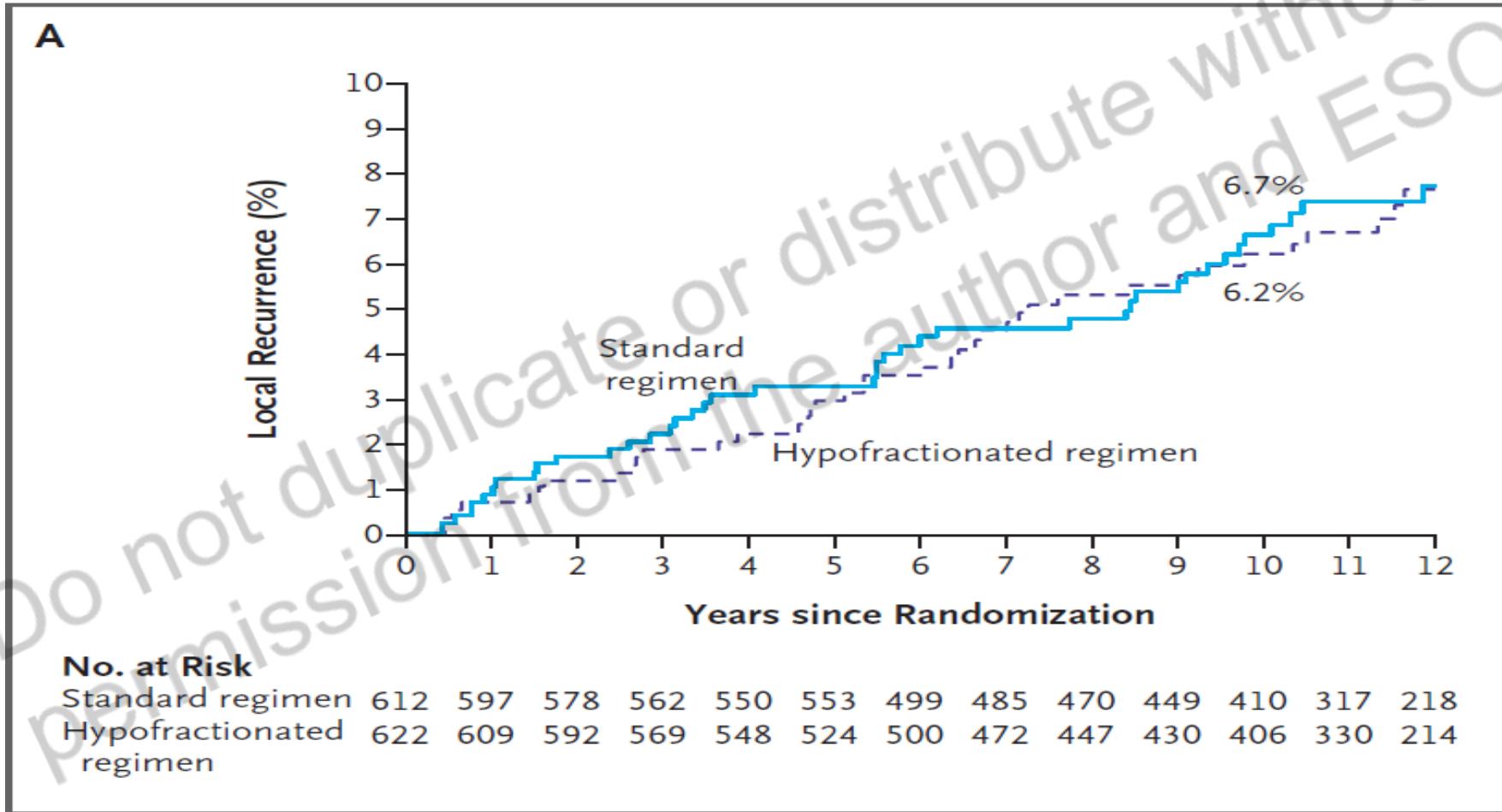
Randomized Trial of Breast Irradiation Schedules After Lumpectomy for Women With Lymph Node-Negative Breast Cancer

Timothy Whelan, Robert MacKenzie, Jim Julian, Mark Levine, Wendy Shelley, Laval Grimard, Barbara Lada, Himu Lukka, Francisco Perera, Anthony Fyles, Ethan Laukkonen, Sunil Gulavita, Veronique Benk, Barbara Szechtman


THE NEW ENGLAND JOURNAL OF MEDICINE

ORIGINAL ARTICLE

Long-Term Results of Hypofractionated Radiation Therapy for Breast Cancer


Timothy J. Whelan, B.M., B.Ch., Jean-Philippe Pignol, M.D., Mark N. Levine, M.D., Jim A. Julian, Ph.D., Robert MacKenzie, M.D., Sameer Parpia, M.Sc., Wendy Shelley, M.D., Laval Grimard, M.D., Julie Bowen, M.D., Himu Lukka, M.D., Francisco Perera, M.D., Anthony Fyles, M.D., Ken Schneider, M.D.,

Hypofractionation in breast RT: Evidence

Hypofractionation in breast RT: Evidence

Local control

Hypofractionation in breast RT: Evidence

Table 1. Late Toxic Effects of Radiation, Assessed According to the RTOG–EORTC Late Radiation Morbidity Scoring Scheme.*

Site and Grade	5 Yr		10 Yr	
	Standard Regimen (N=424)	Hypofractionated Regimen (N=449)	Standard Regimen (N=220)	Hypofractionated Regimen (N=235)
<i>percent of patients</i>				
Skin				
0†	82.3	86.1	70.5	66.8
1	14.4	10.7	21.8	24.3
2	2.6	2.5	5.0	6.4
3	0.7	0.7	2.7	2.5
Subcutaneous tissue				
0‡	61.4	66.8	45.3	48.1
1	32.5	29.5	44.3	40.0
2	5.2	3.8	6.8	9.4
3	0.9	0.9	3.6	2.5

Multivariate analysis on cosmetic outcome: time since treatment, age, tumour size, NOT fractionation

Hypofractionation in breast RT: Evidence

The UK Standardisation of Breast Radiotherapy (START) Trial B of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial

Inclusion 1999-2001, 23 centres in UK

Tumour < 5 cm and N0-1a

(92% lumpectomy, 74% pN0, 64% T<2 cm,
72% Tam, 15% Tam+CT)

2215 pts

40 Gy / 15 fractions, 2.67 Gy / fr

50 Gy / 25 fractions, 2.0 Gy / fr

Endpoints: local control and morbidity

Median follow-up 6.0 years

Hypofractionation in breast RT: Evidence

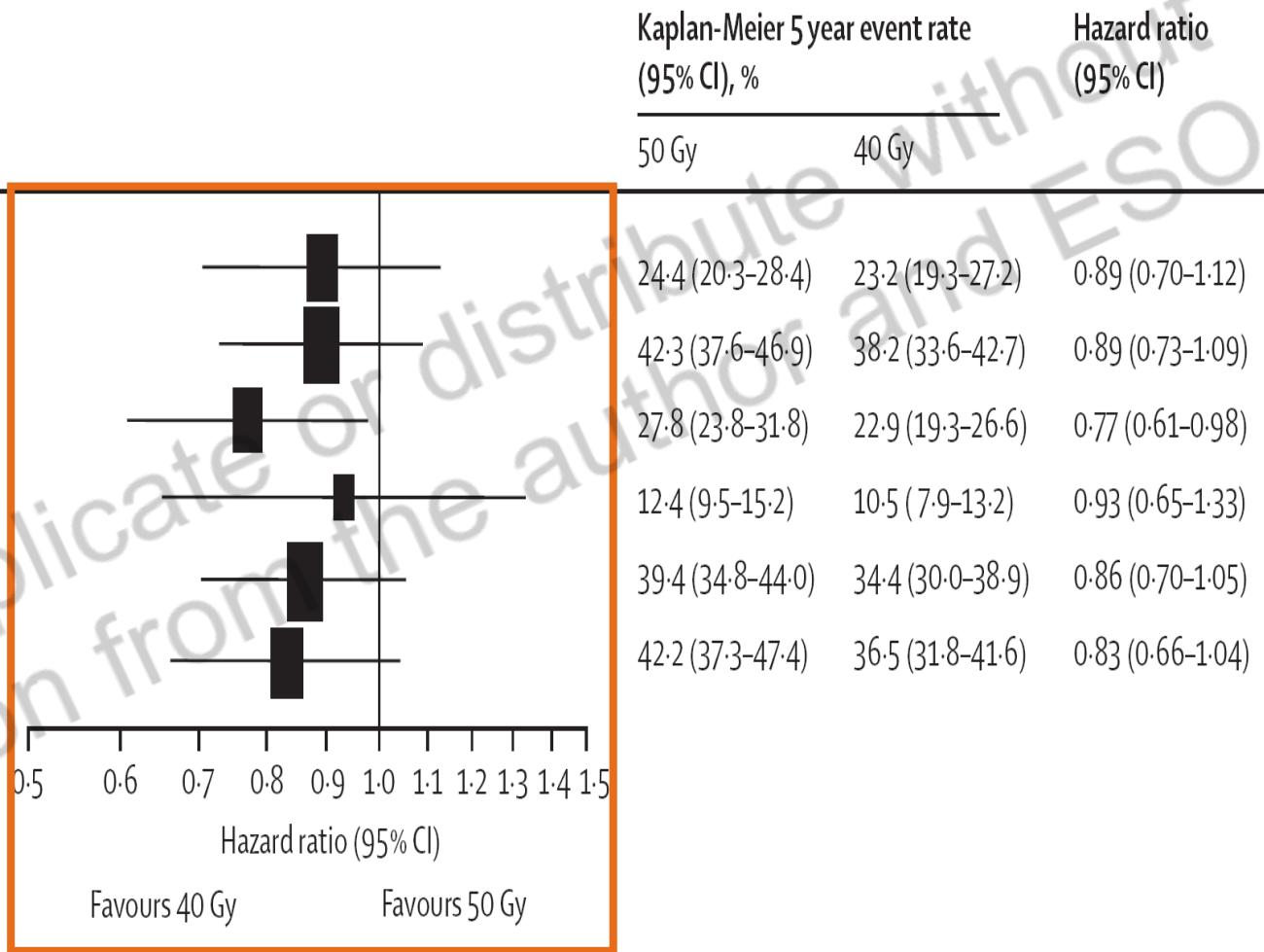
	Events/total (%)	Estimated % with event by 5 years (95% CI)	Crude hazard ratio (95% CI)	Log-rank test p value
Local relapse*				
50 Gy	34/1105 (3.1)	3.3 (2.2-4.4)	1	
40 Gy	25/1110 (2.2)	2.0 (1.1-2.8)	0.72 (0.43-1.21)	0.21
Local-regional relapse				
50 Gy	36/1105 (3.2)	3.3 (2.2-4.5)	1	
40 Gy	29/1110 (2.6)	2.2 (1.3-3.1)	0.79 (0.48-1.29)	0.35
Distant relapse				
50 Gy	122/1105 (11.0)	10.2 (8.4-12.1)	1	
40 Gy	87/1110 (7.8)	7.6 (6.0-9.2)	0.69 (0.53-0.91)	0.01
Any breast cancer-related event†				
50 Gy	164/1105 (14.8)	14.1 (12.0-16.2)	1	
40 Gy	127/1110 (11.4)	10.6 (8.7-12.4)	0.75 (0.60-0.95)	0.02
All-cause mortality				
50 Gy	138/1105 (12.5)	11.0 (9.1-12.9)	1	
40 Gy	107/1110 (9.6)	8.0 (6.4-9.7)	0.76 (0.59-0.98)	0.03

Hypofractionation in breast RT: Evidence

Morbidity

Breast shrinkage since radiotherapy*

Breast hardness since radiotherapy*


Change in skin appearance since radiotherapy

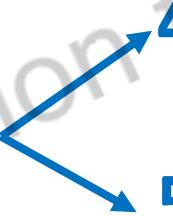
Swelling in area of affected breast

Change in breast appearance since radiotherapy*

Change in breast appearance (photographic)*

*Breast conserving patients only

Hypofractionation in breast RT: Evidence

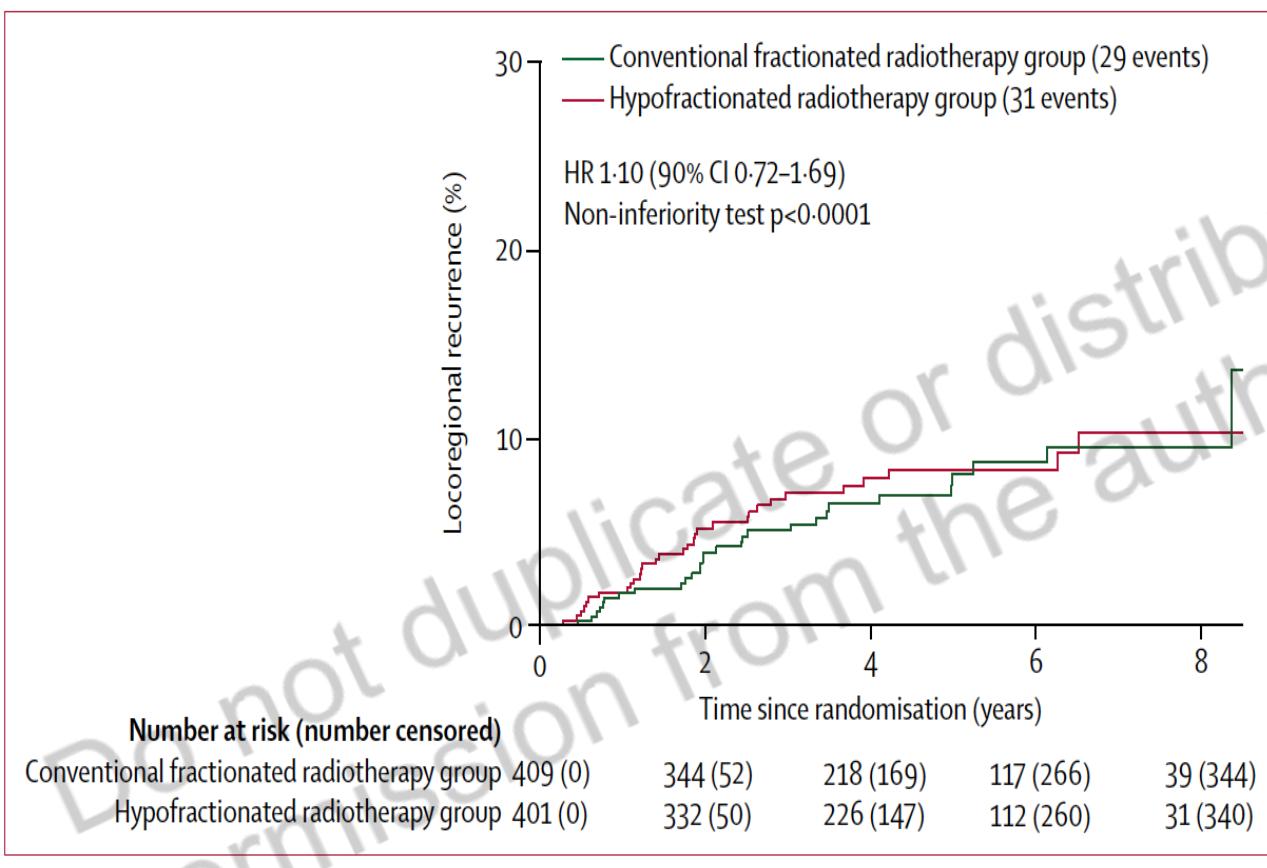

Hypofractionated versus conventional fractionated postmastectomy radiotherapy for patients with high-risk breast cancer: a randomised, non-inferiority, open-label, phase 3 trial

Shu-Lian Wang*, Hui Fang*, Yong-Wen Song, Wei-Hu Wang, Chen Hu, Yue-Ping Liu, Jing Jin, Xin-Fan Liu, Zi-Hao Yu, Hua Ren, Ning Li, Ning-Ning Lu, Yu Tang, Yuan Tang, Shu-Nan Qi, Guang-Yi Sun, Ran Peng, Shuai Li, Bo Chen, Yong Yang, Ye-Xiong Li

Inclusion 2008-2016, 1 centre in China

T3-4 / N2

820 pts


43.5 Gy / 15 fractions, 2.9 Gy / fr

50.0 Gy / 25 fractions, 2.0 Gy / fr

Endpoints: loc0-regional control

Median follow-up 58.5 months

Hypofractionation in breast RT: Evidence

	Conventional fractionated radiotherapy group (n=409)	Hypofractionated radiotherapy group (n=401)	p value
Acute toxicity			
Skin toxicity	<0.0001
Grade 1-2	357 (87%)	351 (89%)	..
Grade 3	32 (8%)	14 (3%)	..
Pneumonitis	0.278
Grade 1	62 (15%)	61 (15%)	..
Grade 2	7 (2%)	14 (3%)	..
Grade 3
Late toxicity			
Skin toxicity	0.669
Grade 1-2	90 (22%)	86 (21%)	..
Grade 3	0	1 (<1%)	..
Lymphoedema	0.961
Grade 1-2	81 (20%)	78 (19%)	..
Grade 3	3 (1%)	3 (1%)	..
Shoulder dysfunction	0.734
Grade 1-2	13 (3%)	7 (2%)	..
Grade 3	1 (<1%)	1 (<1%)	..
Lung fibrosis	0.081
Grade 1-2	42 (10%)	62 (15%)	..
Grade 3	0	0	..
Ischaemic heart disease	0.569
Grade 1-2	1 (<1%)	3 (1%)	..
Grade 3	3 (1%)	4 (1%)	..

Data are n (%). The χ^2 test was used to calculate p values. No grade 4 events or deaths due to adverse effects were reported.

Table 2: Adverse events

Hypofractionation in breast RT: Evidence

Reshma Jagsi

Department of Radiation Oncology, University of Michigan,
Ann Arbor, MI 48109-5010, USA
rjagsi@med.umich.edu

Comment

Hypofractionated radiotherapy after mastectomy: a new frontier

Trials specifically focused on reconstruction outcomes after moderate hypofractionation are underway in the USA (Alliance 221505 [NCT03414970] and FABREC [NCT03422003]). Together with other ongoing trials, this research will hopefully advance our understanding in the near future, and one day, hypofractionated regional nodal irradiation might be considered a standard approach worldwide. For now, we owe our gratitude to Wang and colleagues for their illuminating work in an area of great ongoing interest and investigation.

Hypofractionation in breast RT: *Evidence*

Where is the limit? → FAST

Ten-Year Results of FAST: A Randomized Controlled Trial of 5-Fraction Whole-Breast Radiotherapy for Early Breast Cancer

Adrian Murray Brunt, FRCR¹; Joanne S. Haviland, MSc²; Mark Sydenham, BSc Hons²; Rajiv K. Agrawal, FRCR³; Hafiz Algurafi, FRCR⁴; Abdulla Alhasso, FRCR⁵; Peter Barrett-Lee, FRCR⁶; Peter Bliss, FRCR⁷; David Bloomfield, FRCR⁸; Joanna Bowen, FRCR⁹; Ellen Donovan, PhD¹⁰; Andy Goodman, FRCR¹¹; Adrian Harnett, FRCR¹²; Martin Hogg, FRCR¹³; Sri Kumar, FRCR¹⁴; Helen Passant, FRCR⁶; Mary Quigley, FRCR¹⁵; Liz Sherwin, FRCR¹⁶; Alan Stewart, FRCR¹⁷; Isabel Syndikus, FRCR¹⁸; Jean Tremlett, MSc⁸; Yat Tsang, PhD¹⁹; Karen Venables, PhD¹⁹; Duncan Wheatley, FRCR²⁰; Judith M. Bliss, MSc²; and John R. Yarnold, FRCR²¹

Hypofractionation in breast RT: *Evidence*

Where is the limit? → FAST

Patient selection :

- ≥ 50 years
- < 3 cm
- N0

N = 915; median FU 3 years

Hypofractionation in breast RT: Evidence

Where is the limit? → FAST

Table 2

Schema of the UK FAST trial testing two dose levels of a 5-fraction regimen delivered as one fraction per week versus 50 Gy in 25 fractions over 5 weeks to the whole breast after local tumour excision of early breast cancer.

Group	Total dose (Gy)	Fraction size (Gy)	Number of fractions	Fractions per week
Control	50.0	2.0	25	5
Test 1 ^a	30.0	6.0	5	1
Test 2 ^b	28.5	5.7	5	1

^a Iso-effective with Control if $\alpha/\beta = 4.0$ Gy.

^b Iso-effective with Control if $\alpha/\beta = 3.0$ Gy.

Hypofractionation in breast RT: *Evidence*

Where is the limit? → FAST: side effects

WBI 25 x 2 Gy 5 x 5.7 Gy (α/β-3 Gy) 5 x 6 Gy (α/β-4 Gy)
a / / in 5 weeks

Moist desquamation (5.2%)

12%

2%

3%

Moderate change in the appearance of the breast at 28m

19.3%

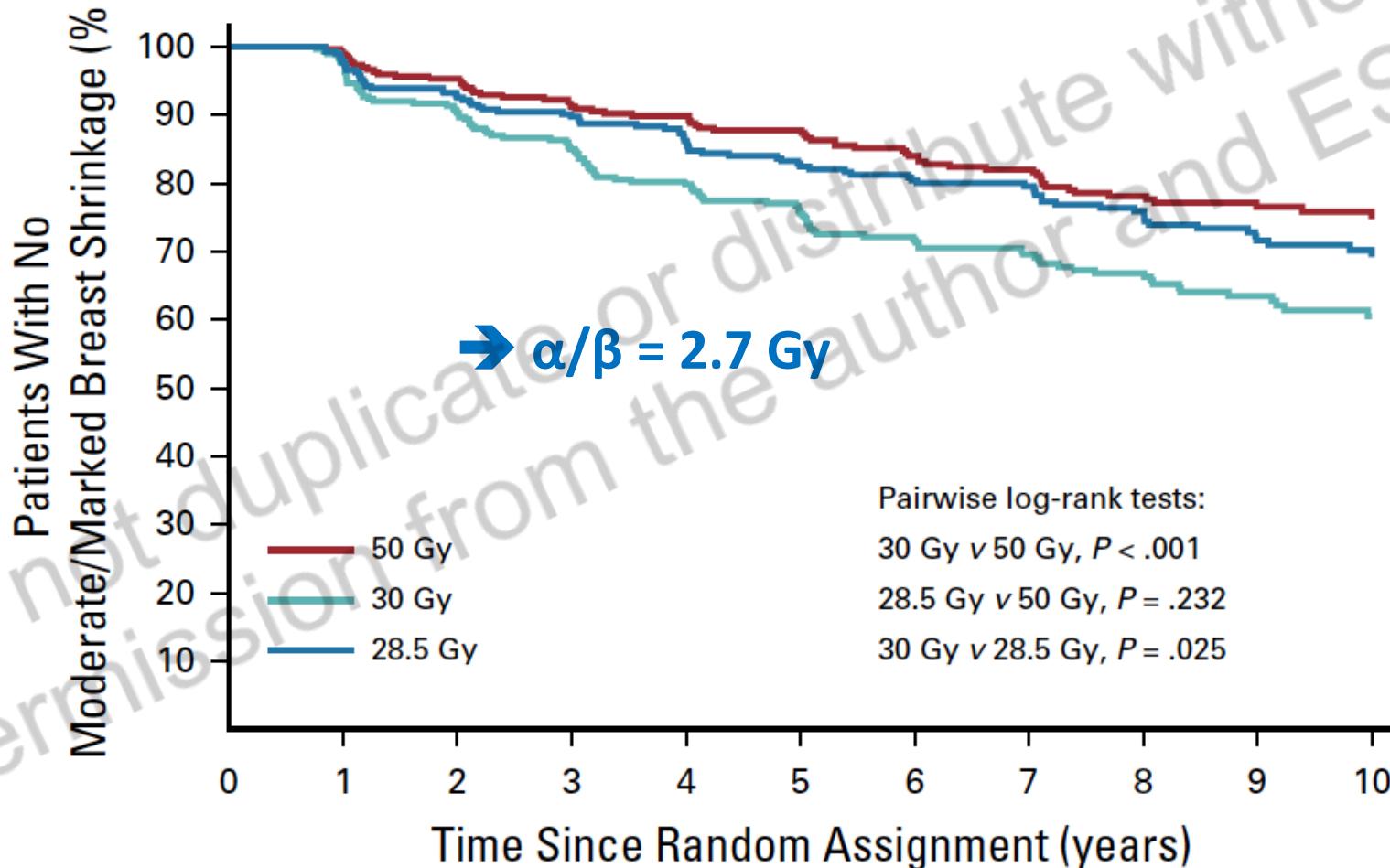
20.3%

26.2%

Marked change in the appearance of the breast at 28m

1.7%

3.7%


9.3%

(p=0.26)

9.3% (p<0.001)

Hypofractionation in breast RT: Evidence

Where is the limit? → FAST: breast shrinkage

Hypofractionation in breast RT: *Evidence*

Hypofractionated breast radiotherapy for 1 week versus 3 weeks (FAST-Forward): 5-year efficacy and late normal tissue effects results from a multicentre, non-inferiority, randomised, phase 3 trial

Adrian Murray Brunt*, Joanne S Haviland*, Duncan A Wheatley, Mark A Sydenham, Abdulla Alhasso, David J Bloomfield, Charlie Chan, Mark Churn, Susan Cleator, Charlotte E Coles, Andrew Goodman, Adrian Harnett, Penelope Hopwood, Anna M Kirby, Cliona C Kirwan, Carolyn Morris, Zohal Nabi, Elinor Sawyer, Navita Somaiah, Liba Stones, Isabel Syndikus, Judith M Blisst, John R Yarnoldt†, on behalf of the FAST-Forward Trial Management Group

Hypofractionation in breast RT: Evidence

FUNDED BY

National Institute
for Health Research

FAST-Forward

Primary endpoint:

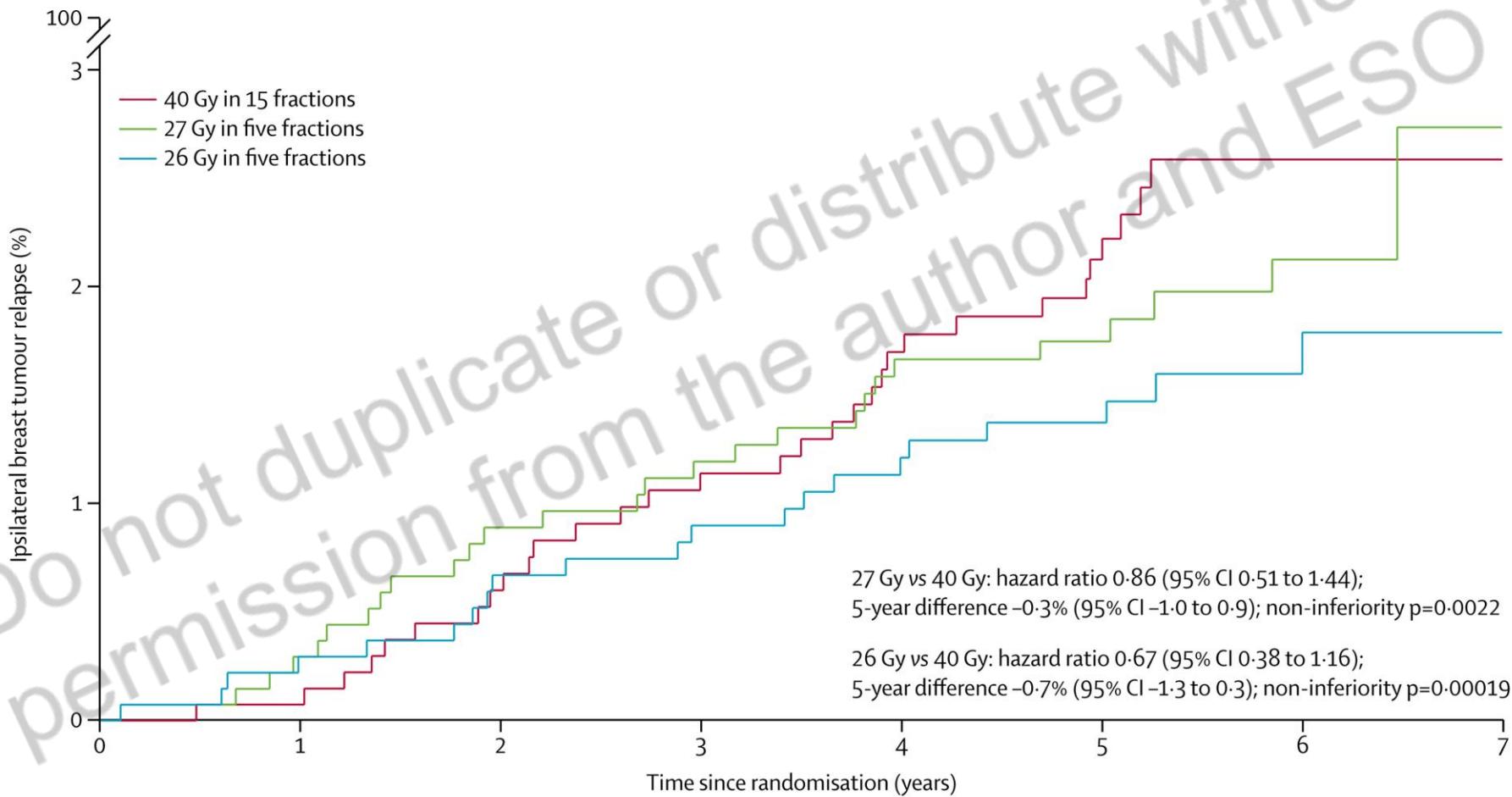
- Ipsilateral breast tumour relapse

Median follow-up: 6 years

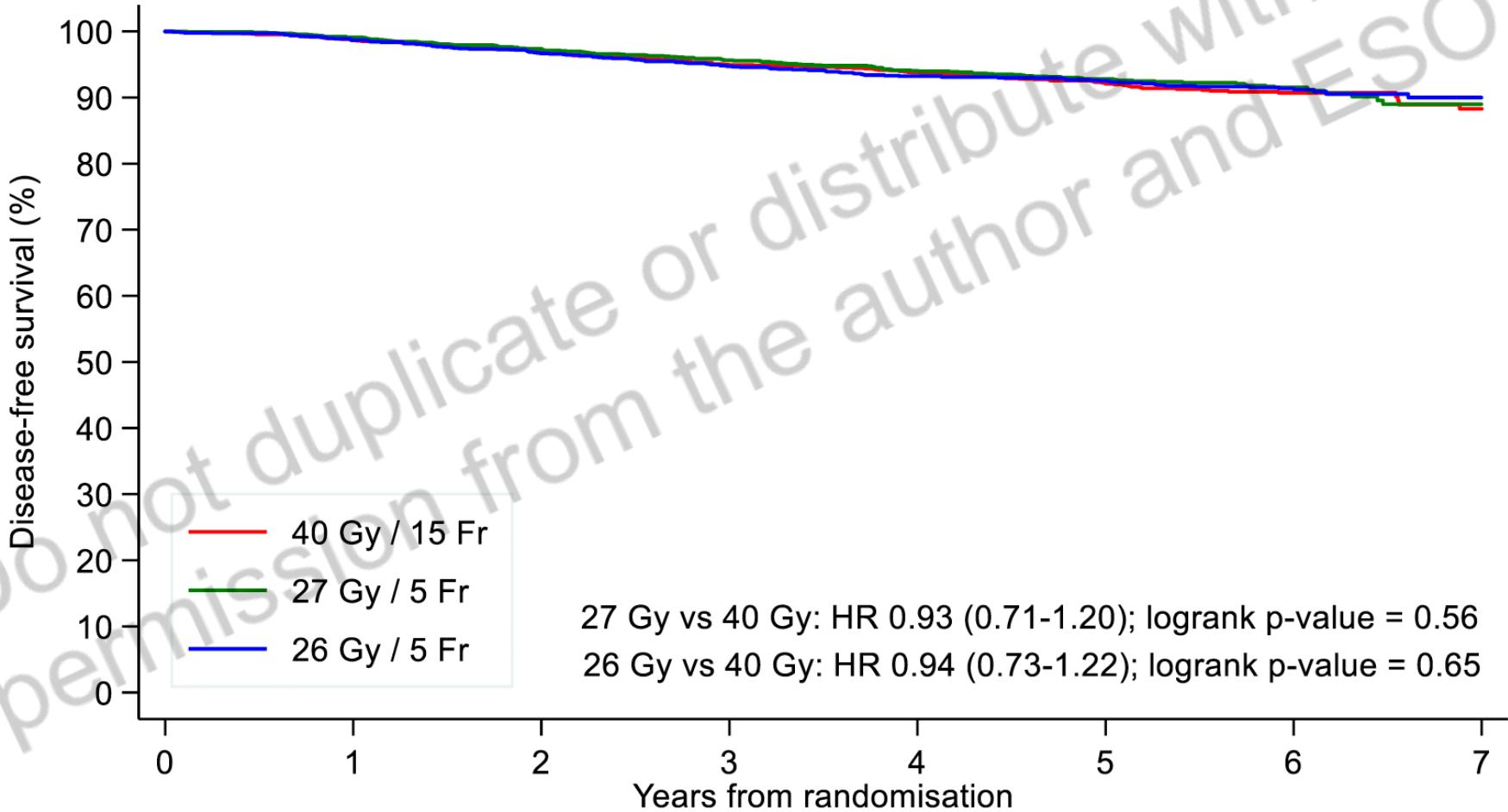

Secondary endpoints:

- early & late AE in normal tissues
- quality of life
- contralateral primary tumours
- regional & distant metastases
- survival

Courtesy of Murray Brunt & Jo Haviland


Hypofractionation in breast RT: Evidence

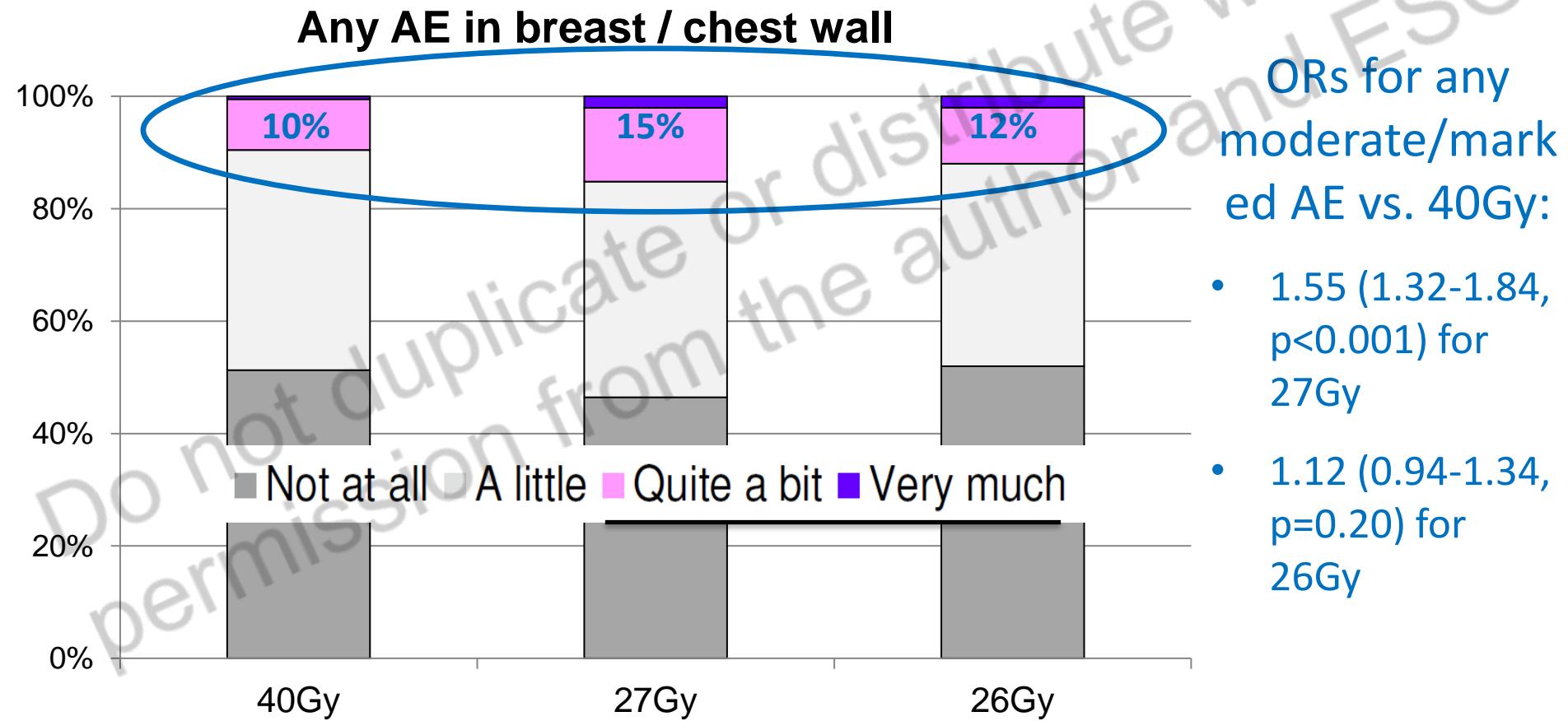
Acute skin toxicity


Hypofractionation in breast RT: Evidence

Primary Endpoint: Ipsilateral breast tumour relapse

Hypofractionation in breast RT: Evidence

Disease-free survival


Hypofractionation in breast RT: Evidence

Clinician-assessed late adverse effects

	Number of moderate or marked events/total number of assessments over follow-up	Odds ratio for schedule (95% CI)	p value for comparison with 40 Gy	p value for comparison between 27 Gy and 26 Gy	Odds ratio for years of follow-up (95% CI); p value
Any adverse event in the breast or chest wall*	0.98 (0.96-1.00); 0.055
40 Gy	651/6121 (10.6%)	1 (ref)
27 Gy	1004/6303 (15.9%)	1.55 (1.32-1.83)	<0.0001
26 Gy	774/6327 (12.2%)	1.12 (0.94-1.34)	0.20	0.0001	..

Hypofractionation in breast RT: Evidence

Clinician assessments of adverse effects at 5 years

Hypofractionation in breast RT: *Evidence*

Fractionation sensitivity (α/β) of late-responding normal tissues

Any clinician-reported moderate/mark AE in breast/chest wall

α/β estimate = 1.7 Gy (95% CI 1.2 – 2.3)

Photographic change in breast appearance

α/β estimate = 1.8 Gy (95% CI 1.1 – 2.4)

Patient-reported moderate/mark change in breast appearance

α/β estimate = 2.3 Gy (95% CI 1.8 – 2.9)

Hypofractionation in breast RT: *Evidence*

Conclusions & implications for clinical practice

- ✓ Both 5-fraction schedules are non-inferior to 40 Gy/15 Fr for local tumour control
- ✓ For late effects:
 - ✓ 26 Gy/5 Fr similar to 40 Gy/15 Fr &
 - ✓ 27 Gy/5 Fr consistent with 50 Gy/25 Fr
- ✓ Benefits to patients
- ✓ Benefits to healthcare systems
- ✓ The UK has adopted 26 Gy/5 Fr at a consensus meeting 15/10/20

Hypofractionation in breast RT

1. Introduction

2. Evidence

3. Discussion

4. Conclusions

Do not duplicate or distribute without
permission from the author and ESO

Hypofractionation in breast RT: *Discussion*

Critical Reviews in Oncology / Hematology 156 (2020) 103090

Contents lists available at [ScienceDirect](#)

Critical Reviews in Oncology / Hematology

journal homepage: www.elsevier.com/locate/critrevonc

European School of Oncology – Review

The use of moderately hypofractionated post-operative radiation therapy for breast cancer in clinical practice: A critical review

Gustavo Nader Marta ^{a,b,*}, Charlotte Coles ^c, Orit Kaidar-Person ^d, Icro Meattini ^{e,f}, Tarek Hijal ^g, Yvonne Zissiadis ^h, Jean-Philippe Pignol ⁱ, Duvern Ramiah ^j, Alice Y. Ho ^k, Skye Hung-Chun Cheng ^l, Gemma Sancho ^m, Birgitte Vrou Offersen ^{n,o}, Philip Poortmans ^{p,q}

Hypofractionation in breast RT: *Discussion*

Table 1

Characteristics of the prospective randomised studies comparing conventional with hypofractionation schedules in breast-cancer patients.

	RMH/GOC611	START A712	START B812	OCOG514	Beijing Trial ¹⁷	Total N (%)
Number of patients	1410	2236	2215	1234	820	7915 (100)
Years of inclusion	1986 - 1998	1998 - 2002	1999 - 2001	1993 - 1996	2008-2016	-
Inclusion criteria	T1-3;N01;M0	T1-3;N0-1;M0	T1-3;N0-1;M0	T1-2;N0;M0	T3-T4;N2-3;M0	-
Median follow-up - years (range)	9.7 (7.8-11.8)	9.3 (8.0-10.0)	9.9 (7.5-10.1)	12.0 (¹⁸)	4.9 (3.7-6.8)	-
Type of surgery N (%)						
Breast-conserving surgery	1214 (86)	1900 (85)	2038 (92)	1098 (89)	0	6250 (79)
Mastectomy	0	336 (15)	177 (8)	0	820 (100)	1665 (21)
Chemotherapy N (%)	196 (14)	793 (35)	491 (22)	136 (11)	820 (100)	2436 (31)
Boost N (%)	1051 (75)	1152 (61)	875 (43)	0	0	3078 (39)
Regional nodal irradiation N (%)	290 (21)	318 (14)	161 (7)	0	840 (100)	1609 (20)

Hypofractionation in breast RT: *Discussion*

Please remember that the results are strictly valid only for the groups of patients who have participated.

Hypofractionation in breast RT: *Discussion*

RT after mastectomy:

	Canada	RMH/GOC	START A	START B
Mastectomy	0%	0%	15%	8%

Hypofractionation in breast RT: *Discussion*

Lymph node RT:

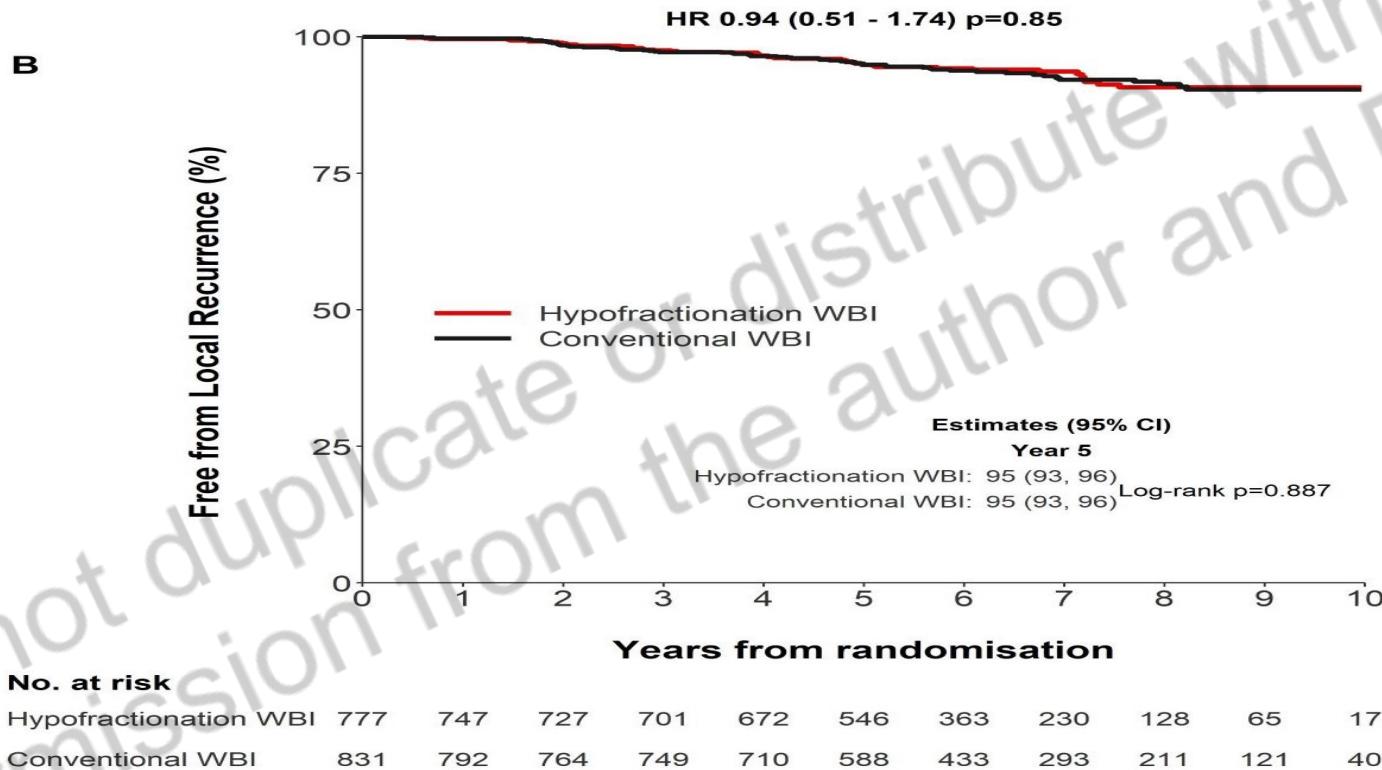
	Canada	RMH/GOC	START A	START B
N+	0%	32.8%	28.8%	22.8%
LN RT	0%	20.6%	14.2%	7.3%

Hypofractionation in breast RT: *Discussion*

RT for advanced stage:

	Canada	RMH/GOC	START A	START B
pT1-2	100%	94%	100%	100%

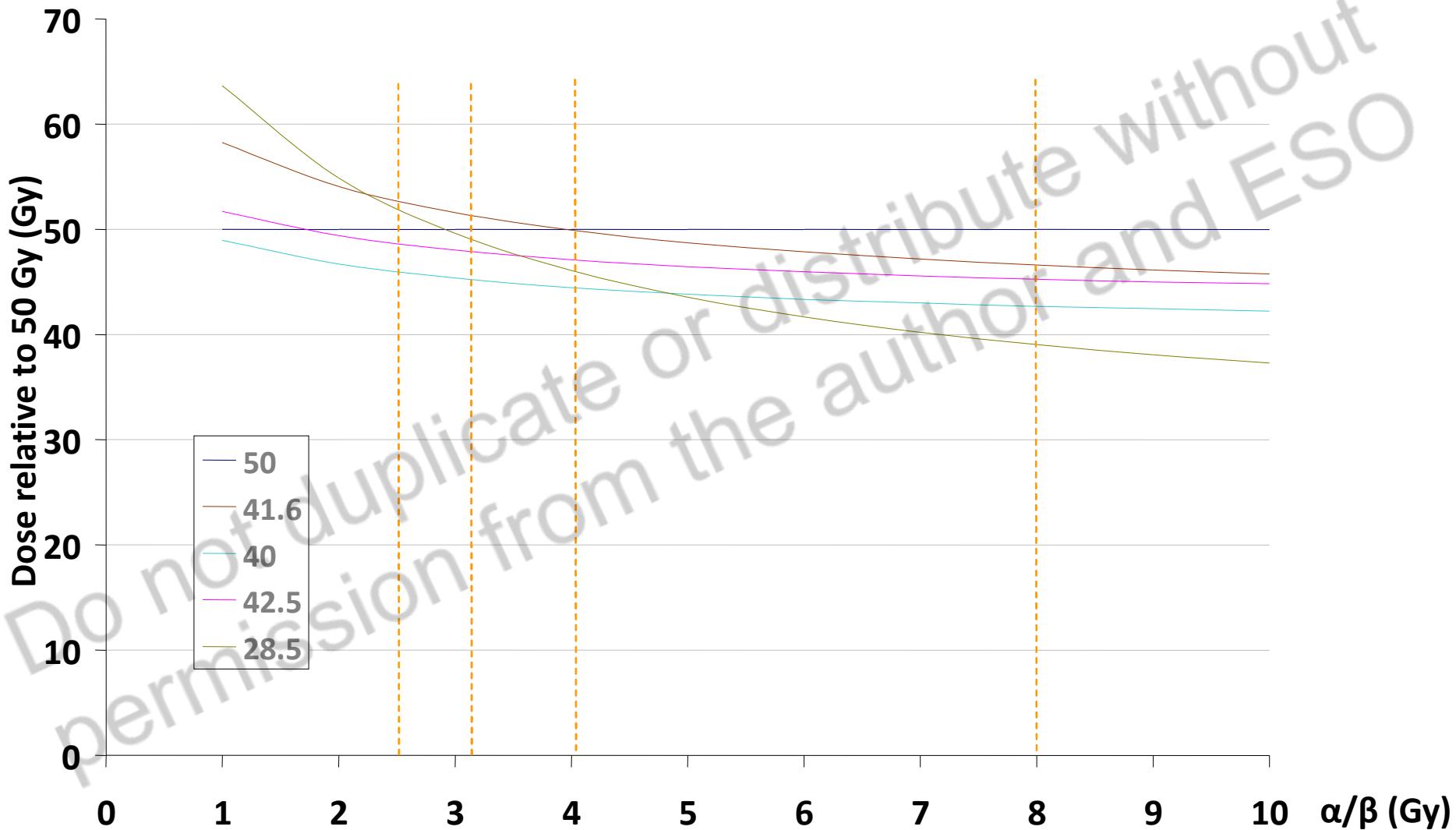
Hypofractionation in breast RT: *Discussion*


RT with a boost:

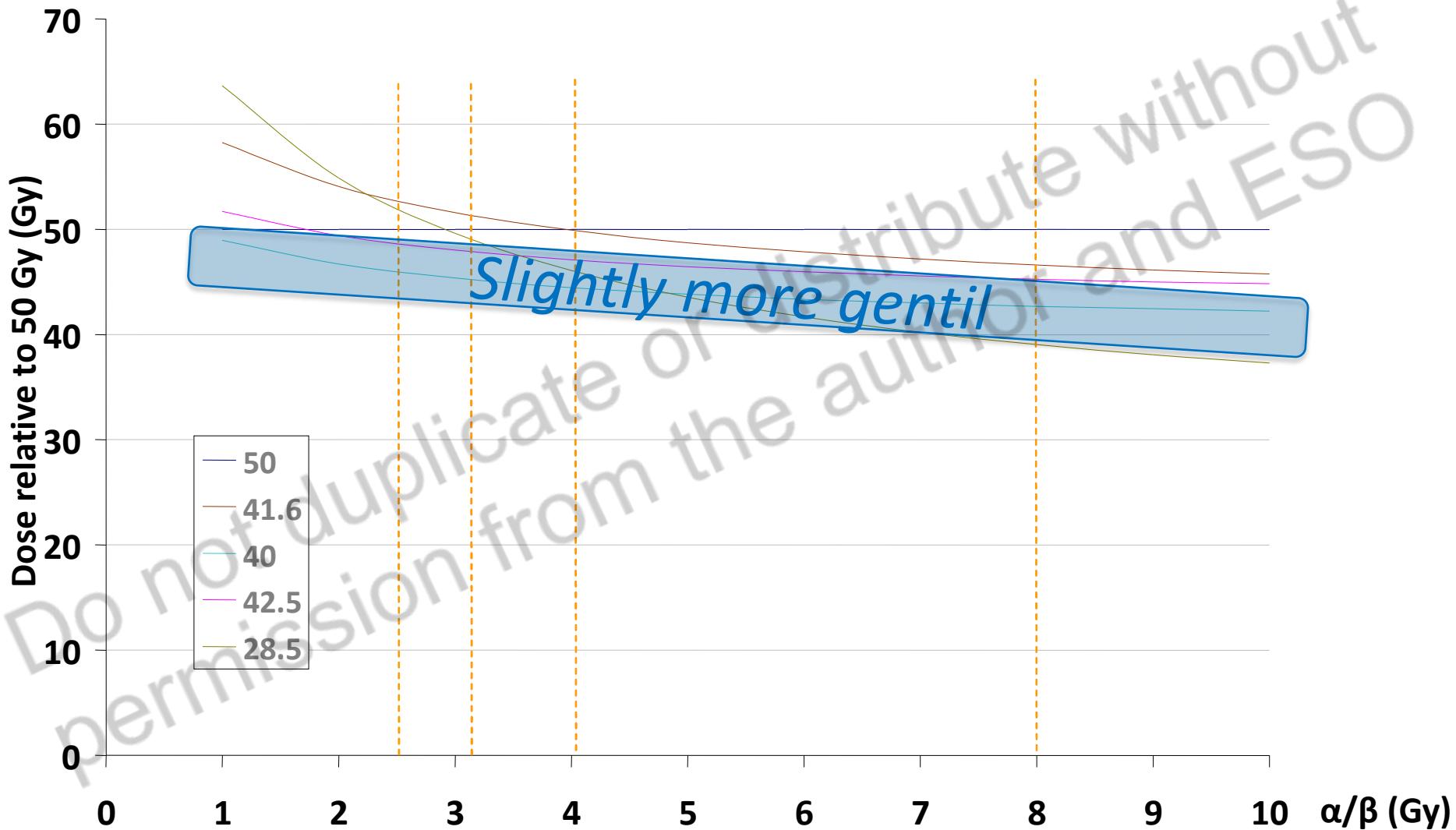
	Canada	RMH/GOC	START A	START B
Boost	0%	74.5%	60.6%	42.6%

Conventionally fractioned → ?

Hypofractionation in breast RT: *Discussion*

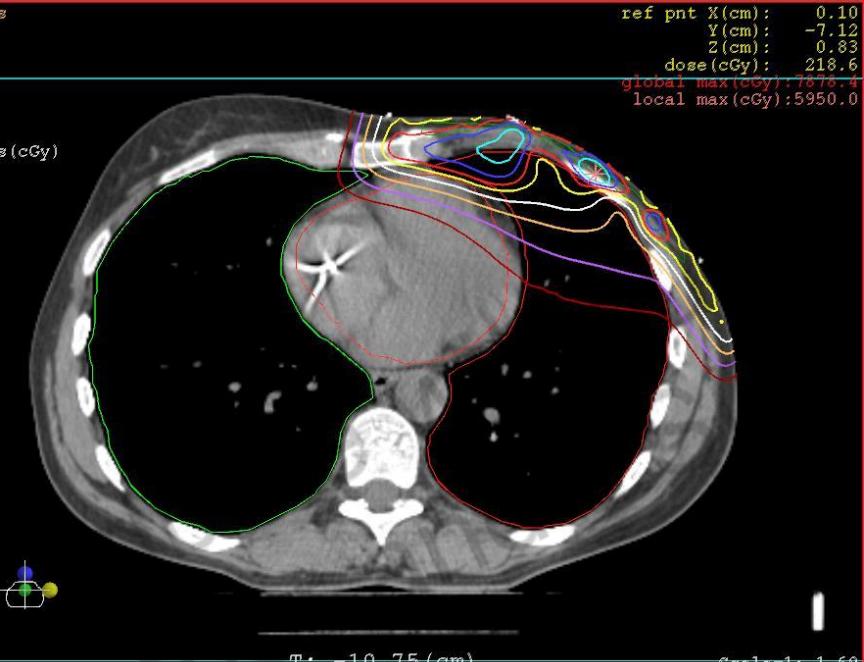
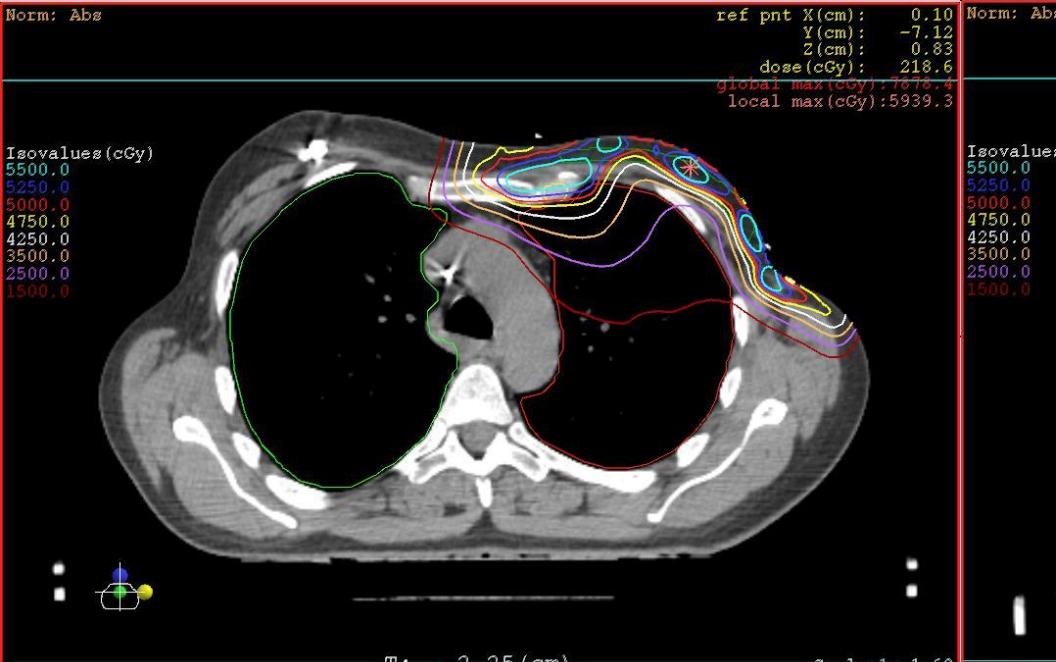

RT for DCIS:

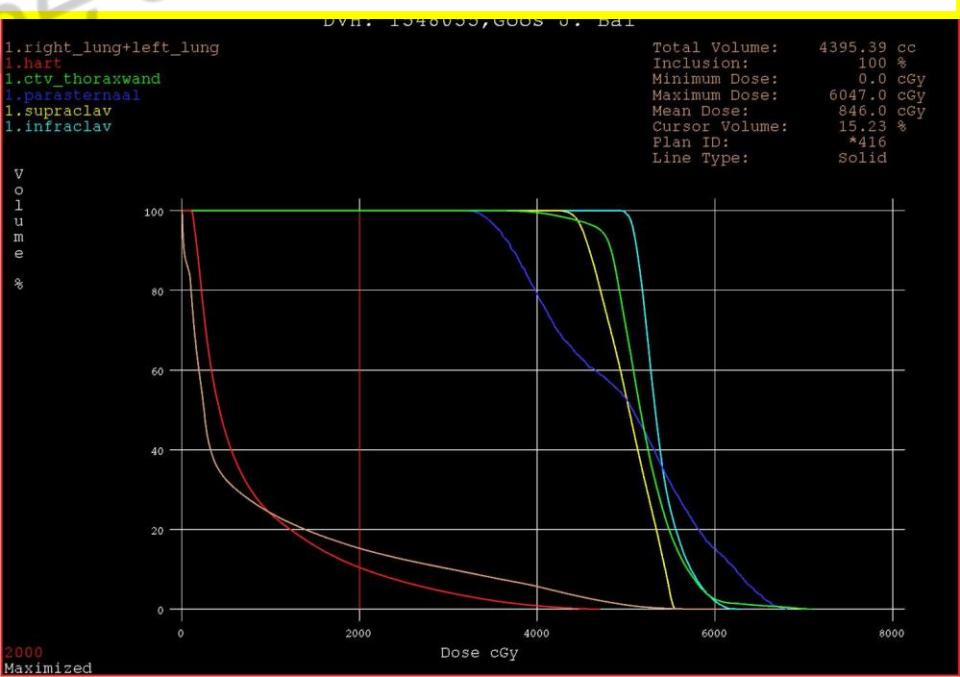
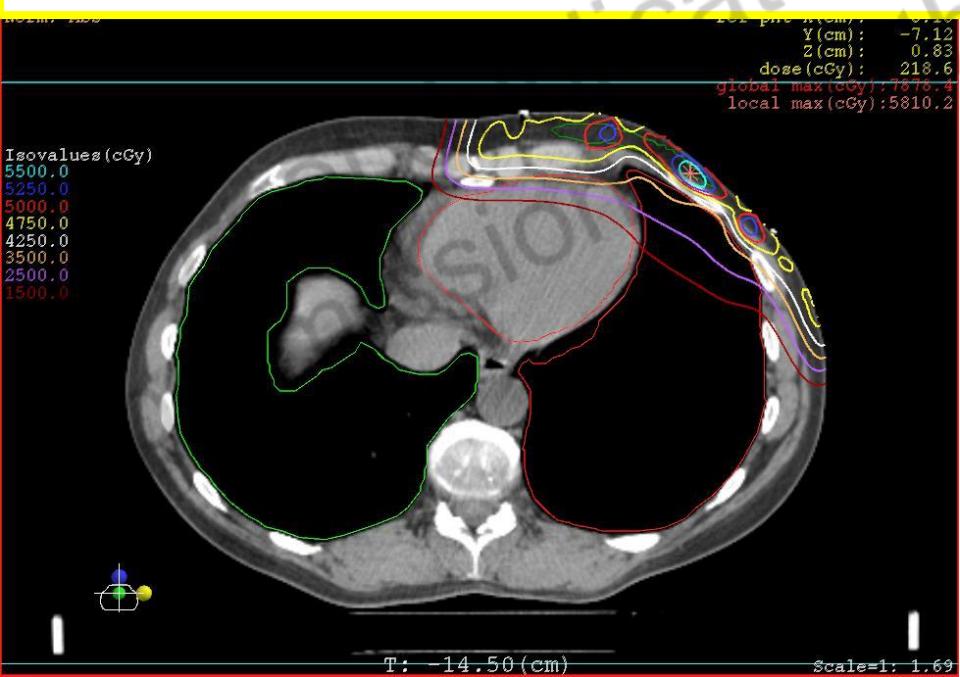
→ OK!


Hypofractionation in breast RT: *Discussion*

Radiobiology: LQ model vs. the trial results

Hypofractionation in breast RT: *Discussion*

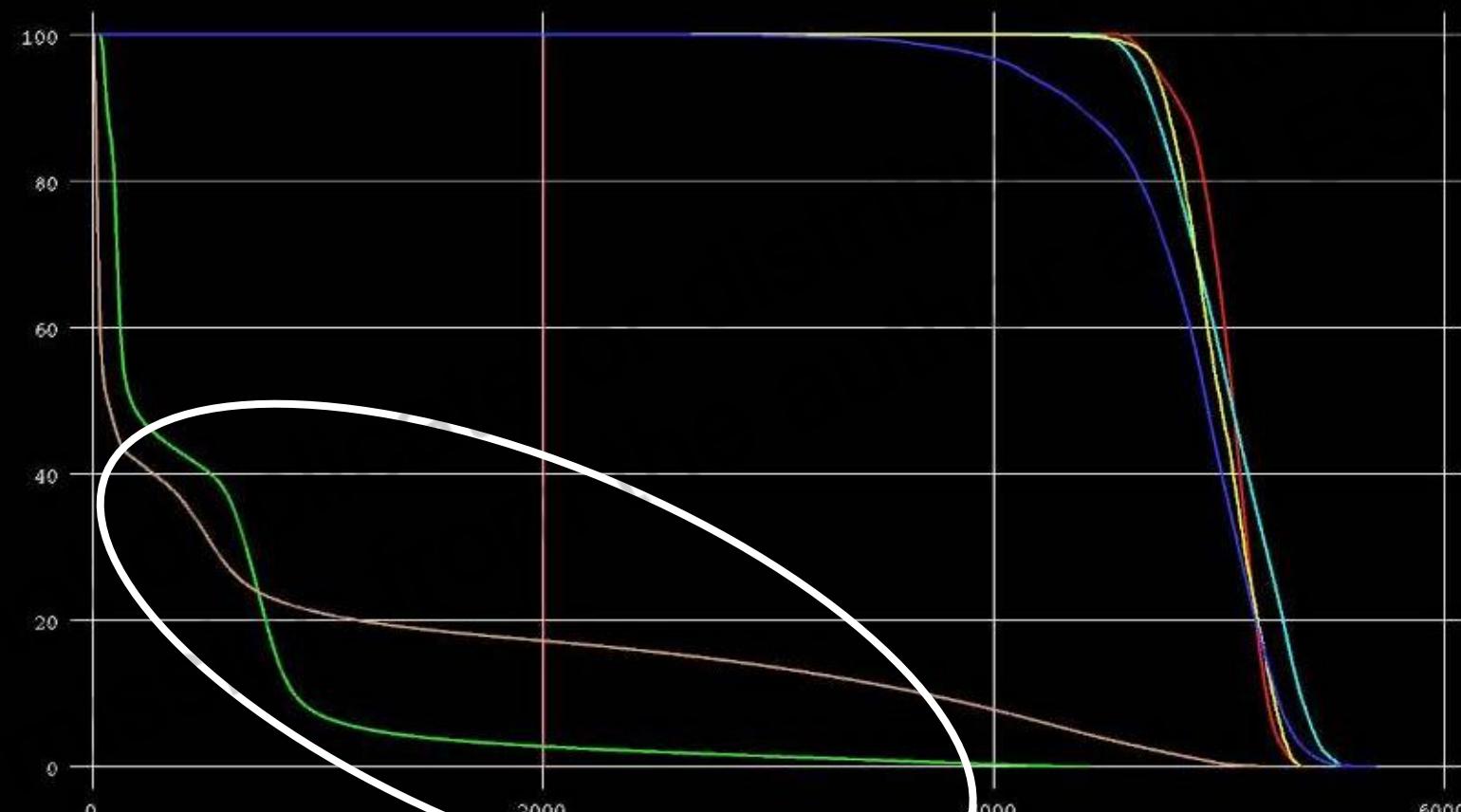


Radiobiology: LQ model vs. the trial results



Hypofractionation in breast RT: *Discussion*

Do not duplicate or distribute without
permission from the author and ESO

For tissues outside of the target volumes

5-field electron technique including the IMC



1.right_lung+left_lung
1.ctv_thoraxwand
1.parasternaal
1.supraclav
1.infraclav
1.hart

Total Volume: 4393.38 cc
Inclusion: 100 %
Minimum Dose: 1.0 cGy
Maximum Dose: 5257.0 cGy
Mean Dose: 828.0 cGy
Cursor Volume: 17.17 %
Plan ID: *427
Line Type: Solid

V
o
l
u
m
e
%

2003
Maximized

0 0.67 1.33 2.0 2.66

Hypofractionation in breast RT: Discussion

Realistic scenario: $\alpha/\beta = 2 \text{ Gy LNT} \& 3.5 \text{ Gy BC}$

Protocol	schedule	α/β NT	α/β T	
		2 Gy	3.5 Gy	
START	15 x 2.67	46.76		44.93
Canadian	16 x 2.66	49.58		47.67
Standard	25 x 2	50		50
	100	2,66	49,58	50,00
	95	2,53	46,93	47,50
	90	2,39	44,29	45,00
	85	2,26	41,66	42,50
	70	1,86	33,84	35,00
	50	1,33	23,62	25,00
	25	0,67	11,34	12,50

Hypofractionation in breast RT: Discussion

Optimistic scenario: $\alpha/\beta = 3 \text{ Gy LNT} \& 3 \text{ Gy BC}$

Protocol	schedule	α/β NT	α/β T	
		3 Gy	3 Gy	
START	15 x 2.67	45.42		45.42
Canadian	16 x 2.66	48.18		48.18
Standard	25 x 2	50		50
	100	2,66	48,18	50,00
	95	2,53	45,61	47,50
	90	2,39	43,04	45,00
	85	2,26	40,49	42,50
	70	1,86	32,92	35,00
	50	1,33	23,04	25,00
	25	0,67	11,14	12,50

Hypofractionation in breast RT: Discussion

Worst scenario: $\alpha/\beta = 1 \text{ Gy LNT} \& 5 \text{ Gy BC}$

Protocol	schedule	α/β NT		α/β T
		1 Gy	5 Gy	
START	15 x 2.67	48,99		43.88
Canadian	16 x 2.66	51.92		46.57
Standard	25 x 2	50		50
	100	2,66	51,92	2,00
	95	2,53	49,17	1,90
	90	2,39	46,43	1,80
	85	2,26	43,69	1,70
	70	1,86	35,53	1,40
	50	1,33	24,79	1,00
	25	0,67	11,81	0,50
				12,50

Hypofractionation in breast RT: *Discussion*

The mathematics matches the results

→ *by reducing the total dose we even lower the expected effect in the regions outside of the non-therapeutic doses!*

Hypofractionation in breast RT: *Discussion*

Dutch protocol 2009 (!!!!):

- 2,66 Gy as highest dose to part of the target volume
- No discussion for: breast/thoracic wall; SIB
- ≤ 50 years: limitation taken away after closure YBT (2011)
- Some doubts about regional RT
- More doubts about combination with reconstructive surgery

Hypofractionation in breast RT: *Discussion*

• Breast:	2 Gy	50 Gy in 25 fractions
• Boost:	2 Gy	16 Gy in 08 fractions
• TOTAL:	2 Gy	66 Gy in 33 fractions

Hypofractionation in breast RT: *Discussion*

• Breast:	2 Gy	50 Gy in 25 fractions
• Boost:	2 Gy	16 Gy in 08 fractions
• TOTAL:	2 Gy	66 Gy in 33 fractions
• Breast:	1,81 Gy	50,68 Gy in 28 fractions
• Boost:	0,49 Gy	13,72 Gy in 28 fractions
• TOTAL:	2,3 Gy	64,40 Gy in 28 fractions

Hypofractionation in breast RT: *Discussion*

• Breast:	2 Gy	50 Gy in 25 fractions
• Boost:	2 Gy	16 Gy in 08 fractions
• TOTAL:	2 Gy	66 Gy in 33 fractions
• Breast:	1,81 Gy	50,68 Gy in 28 fractions
• Boost:	0,49 Gy	13,72 Gy in 28 fractions
• TOTAL:	2,3 Gy	64,40 Gy in 28 fractions
• Breast:	2,17 Gy	45,57 Gy in 21 fractions
• Boost:	0,49 Gy	10,29 Gy in 21 fractions
• TOTAL:	2,66 Gy	55,86 Gy in 21 fractions

Hypofractionation in breast RT: *Discussion*

Current Dutch protocol:

- Transition to UK schedule (40/15) in 2020

Hypofractionation in breast RT: *Discussion*

Current protocol in many countries:

- Repopulation
- Redistribution
- Reoxygenation
- Repair

Hypofractionation in breast RT: *Discussion*

Current protocol in many countries:

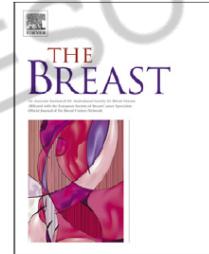
- Repopulation
- Redistribution
- Reoxygenation
- Repair
- Resistance

Hypofractionation in breast RT: *Discussion*

Current protocol in many countries:

- Repopulation
- Redistribution
- Reoxygenation
- Repair
- Resistance
- Reimbursement

Hypofractionation in breast RT: *Discussion*


The Breast 55 (2021) 128–135

Contents lists available at [ScienceDirect](#)

The Breast

journal homepage: www.elsevier.com/brst

Viewpoints and debate

Why is appropriate healthcare inaccessible for many European breast cancer patients? — The EBCC 12 manifesto

Fatima Cardoso ^{a,*}, Fiona MacNeill ^b, Frederique Penault-Llorca ^c, Alexandru Eniu ^{d,e}, Francesco Sardanelli ^{f,g}, Elizabeth Bergsten Nordström ^h, Philip Poortmans ⁱ, on behalf of the EBCC12-Faculty

Hypofractionation in breast RT: *Discussion*

Radiation Oncology

Moderate hypofractionated post-operative radiation therapy

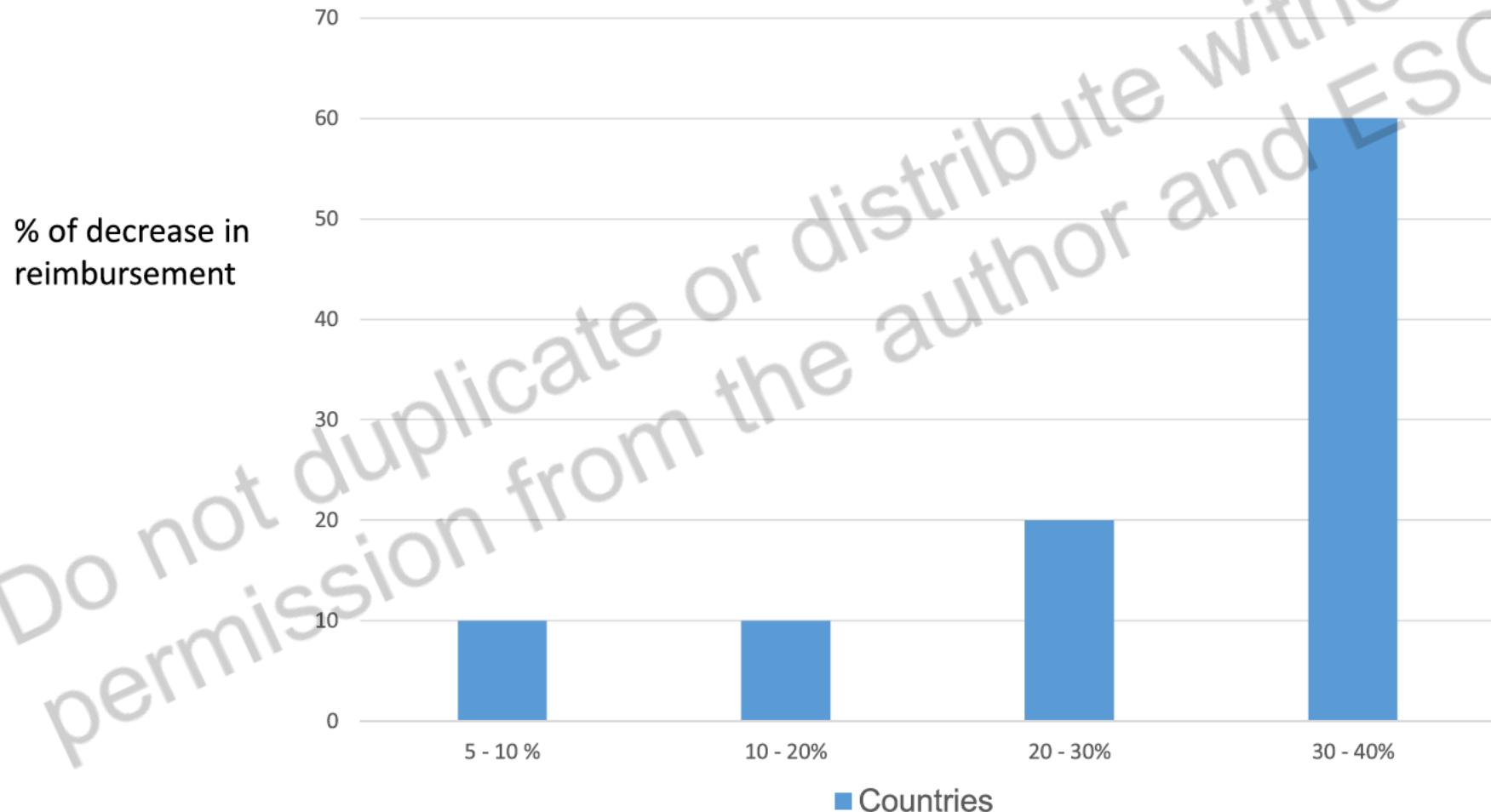
Moderate hypofractionation schedules (15–16 fractions of <3 Gy/fraction) are recommended for routine postoperative RT of breast cancer ([17]). However, reimbursement rules are per fraction based and therefore favour conventional fractionation leading hospital management to force limited use of hypofractionation.

Hypofractionation in breast RT: *Discussion*

Contents lists available at [ScienceDirect](#)

Clinical Oncology

journal homepage: www.clinicaloncologyonline.net


Original Article

The Financial Impact on Reimbursement of Moderately Hypofractionated Postoperative Radiation Therapy for Breast Cancer: An International Consortium Report

G.N. Marta ^{*}, D. Ramiah [†], O. Kaidar-Person [‡], A. Kirby ^{§¶}, C. Coles ^{||}, R. Jaggi ^{**}, T. Hijal ^{††}, G. Sancho ^{‡‡}, Y. Zissiadis ^{§§}, J.-P. Pignol ^{¶¶}, A.Y. Ho ^{|||}, S.H.-C. Cheng ^{***}, B.V. Offersen ^{†††††}, I. Meattini ^{§§§¶¶¶}, P. Poortmans ^{|||||****}

Hypofractionation in breast RT: *Discussion*

Decrease in reimbursement from hypofractionation

Hypofractionation in breast RT

1. Introduction
2. Evidence
3. Discussion
- 4. Conclusions**

Do not duplicate or distribute without
permission from the author and ESO

Hypofractionation in breast RT: *Conclusions*

Moderately hypofractionated breast radiation therapy: is more evidence needed?

Gustavo Nader Marta; Philip Poortmans

The question is, however, to which extent any further evidence is still required. In countries as The Netherlands, hypofractionation is the standard for nearly every indication for several years now, using the argument that with modern homogeneously delivered volume-based RT techniques the biological effects should be identical independent from the target volumes. Similarly, we don't question whether fractionation schedules for head- and neck cancer should be dependent from the anatomical sub-site? Or aren't it rather reimbursement issues that refrain hospital managers and doctors from allowing brother introduction of schedules with a lower number of fractions and a lower total dose? Even more in countries with limited resources we should not wait until further evidence becomes available before generalizing hypofractionated breast irradiation!

Hypofractionation in breast RT: *Conclusions*

Moderately hypofractionated breast radiation therapy: is more evidence needed?

Gustavo Nader Marta; Philip Poortmans

And now a trial from a country with limited resources, using radiation therapy techniques from 25 years ago should help to convince centres in countries with modern infrastructures and excellent contemporary radiation delivery help to convince? Please! Let's cut the crap and make a point on this, like we did (maybe too gently but happy to make it clearer) in our last paragraph.

Anyway, we aim to stimulate the readers the readers of *The Lancet Oncology* in their reflections and decision-making of whether or not to accept hypofractionated breast radiation therapy in their daily clinical practice.

We confirm that we have no financial incentives associated with publishing this letter (working in France I could rather say the inverse is true).

Hypofractionation in breast RT: *Conclusions*

Trust in hypofractionation:

- Aim at homogenous dose distributions
- The 26/5/1 “FAST-Forward” fractionation is my 1st choice for: breast only; chest wall only; PBI
- The 30/5/5 “FAST” fractionation can be used for frail patients
- Limit the fraction size to \pm 2,67 Gy for locoregional RT (for now...)

Hypofractionation in breast RT: *Conclusions*

Trust in hypofractionation:

- Aim at homogenous dose distributions
- The 26/5/1 “FAST-Forward” fractionation is my 1st choice for: breast only; chest wall only; PBI
- The 30/5/5 “FAST” fractionation can be used for frail patients
- Limit the fraction size to \pm 2,67 Gy for locoregional RT (for now...)

Hypofractionation in breast RT: *Conclusions*

Trust in hypofractionation:

- Aim at homogenous dose distributions
- The 26/5/1 “FAST-Forward” fractionation is my 1st choice for: breast only; chest wall only; PBI
- The 30/5/5 “FAST” fractionation can be used for frail patients

Limit the fraction size to $\pm 2,67$ Gy for locoregional RT (for now...)

Hypofractionation in breast RT: *Conclusions*

Trust in hypofractionation:

- Aim at homogenous dose distributions
- The 26/5/1 “FAST-Forward” fractionation is my 1st choice for: breast only; chest wall only; PBI
- The 30/5/5 “FAST” fractionation can be used for frail patients
- Limit the fraction size to $\pm 2,67$ Gy for locoregional RT (for now...)

Hypofractionation in breast RT: *Conclusions*

And what with 50/25/5?

- When combined with radiosensitisers (systemic therapy; hyperthermia)
- To be considered for re-irradiation (but 40/15/3 preferable)
- And else?

Hypofractionation in breast RT: *Conclusions*

And what with 50/25/5?

- When combined with radiosensitisers (systemic therapy; hyperthermia)
- To be considered for re-irradiation (but 40/15/3 preferable)
- And else?

Hypofractionation in breast RT: *Conclusions*

And what with 50/25/5?

- When combined with radiosensitisers (systemic therapy; hyperthermia)
- To be considered for re-irradiation (but 40/15/3 preferable)
- And else?

Hypofractionation in breast RT: *Conclusions*

ESTRO ACROP Consensus recommendations on patient selection and dose/fractionation for external beam radiation therapy in early breast cancer

ESTRO

Core Group: Icro Meattini (IT), Charlotte Coles (UK), Philip Poortmans (B), Liesbeth Boersma (NL), Orit Kaidar-Person (IL), Gustavo Nader Marta (Brasil), Angel Montero-Luis (E), Birgitte Offersen (DK), and Carlotta Becherini (IT, Secretariat)

Extended Consensus Panel: representatives of radiation/clinical oncologists, radiobiologists, medical physicists, RTTs, and patient advocates.

November, 2020	Identification of the writing-committee* including the experts ECP (CG) Define clinical questions, key-topics, and existing LoE (CG)
January, 2021	Literature review and consensus recommendations (CG) Definition of consensus draft-statements (CG)
February-March, 2021	Consensus round one: first Delphi round on draft-statements (CG, ECP) Compile ratings and comments (CG) Review results (CG, ECP)
April, 2021	Consensus round two-three: second-third Delphi round on key-statements (CG, ECP) New and previous iterations of recommendations are presented (CG, ECP)
May, 2021	Discussion of the key-statements and assessment of the agreement (CG, ECP) Ratings are accepted if consensus is achieved (CG, ECP)
May, 2021	Two rounds of e-mail sharing of the discussed key-statements for minor amendments (CG, ECP)
June, 2021	Finalizing of manuscript (CG, ECP)
August, 2021	Public discussion or writing-committee meeting at the ESTRO Congress 2021 (27-31 Aug, Madrid)

Abbreviations: CG, core group; ECP, extended consensus panel; LoE, level-of-evidence; ESTRO, European Society for Radiotherapy and Oncology.

*Writing-committee included CG and ECP members.

Hypofractionation in breast RT: *Conclusions*

ESTRO ACROP Consensus recommendations on patient selection and dose/fractionation for external beam radiation therapy in early breast cancer

Core Group: Icro Meattini (IT), Charlotte Coles (UK), Philip Poortmans (B), Liesbeth Boon (NL), Nader Marta (Brasil), Angel Montero-Luis (E), Birgitte Offersen (DK), and Carlotta Pizzocaro (I)

Extended Consensus Panel: representatives of radiation/clinical oncologists and advocates.

November, 2020	Identification of the problem Define aims Literature review
January, 2021	First Delphi round on key-statements (CG, ECP)
February	Second Delphi round on key-statements (CG, ECP)
March	Final recommendations are presented (CG, ECP)
April	Final statements and assessment of the agreement (CG, ECP)
May	Finalized if consensus is achieved (CG, ECP)
June	Process of e-mail sharing of the discussed key-statements for minor amendments (CG, ECP)
July	Finalizing of manuscript (CG, ECP)
August	Public discussion or writing-committee meeting at the ESTRO Congress 2021 (27-31 Aug, Madrid)

Abbreviations: CG, core group; ECP, extended consensus panel; LoE, level-of-evidence; ESTRO, European Society for Radiotherapy and Oncology.

*Writing-committee included CG and ECP members.

Hypofractionation in BC: Acknowledgements

- All the patients participating to the trials.
- All the investigators participating to the trials.
- The research teams of the trials.
- The research fellows involved in the trials.
- Special words of thanks to (alphabetically): Marianne Aznar; Harry Bartelink; Liesbeth Boersma; Murray Brunt; Charlotte Coles; Laurence & Sandra Collette; Marion Essers; Sandra Hol; Orit Kaidar-Person; Icro Meattini; Gustavo Marta Nader; Birgitte Offersen; John Yarnold; Timothy Whelan
- In fact: too many to list here!!!!