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image guided in all steps
precise, effective and tolerable

Image-based approach towards personalized
radiation oncology

Target Volumes

Dose Distribution




IGRT review free full text Mol Oncol 2020, 14:1470

»

Molecylar "C\ Syrenseress | Clectio
On cuLIr::gy o C\\‘(\ S FERSPR ESS

REVIEW

Image guidance in radiation therapy for better cure of

cancer

Vincent Grégoire’, Matthias Guckenberger?, Karin Haustermans®, Jan J. W. Lagendijk®
Cynthia Ménard®, Richard Pétter®, Ben J. Slotman’, Kari Tanderup®, Daniela Thorwarth?,

Marcel van ‘Herk'%""** and Daniel Zips™ 1




~
VAR W 2\’
-

Radiation oncology in
the era of precision medicine

Michael Baumann'~6, Mechthild Krause'’=5, Jens Overgaard’, Jiirgen Debus>%~', Spren M.
Bentzen'?, Juliane Daartz'3, Christian Richter’->, Daniel Zips®>'#'> and Thomas Bortfeld'3

NATURE REVIEWS | CANCER VOLUME 16 | APRIL 2016 | 235

and stage have
typically received

°
° ® Patients with the
S w same tumour disease
similar treatments

°
w ® o w e Large clinical trials
w w possible

o o ® ®
wwww ww w * Biomarkers allow
stratification into

small subgroups

e o o
e Trials for treatment
individualization
J




PSMAPET CT

MRI at 1.5 T MRL

CBCT

s&s IMRT (8
Beams, min.
segment size: 3
cm?, min. MU/
segment: 10)

motion monitoring




Imaging Biomarker Roadmap for Cancer Studies

O‘Connor JPB, et al. Nat Rev Clin Oncol 2017; 14(3): 169-86.
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Functional imaging may allow to discriminate risk groups
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FDG PET/CT based RT planning improves local control in HNC

Van den Bosch S, et al. Radiother Oncol 2020; 142: 107-14.

 FDG PET/CT based nodal target volume (NTV)
definition vs. conventional CT based

e N=633 head-and-neck cancer (HNC) patients
e 46% with PET/CT based NTV definition

e PET based NTV definition improved local control
(HR: 0.33, p=0.026)

 High potential von FDG PET based NTV definition
forpersonalized target delineation/ dose
prescription concepts in HNC RT
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FDG PET based target volume delineation allows
personalized RT dose escalation

Nestle U, et al. Lancet Oncol 2020; 21(4): 581-92.
Randomized PET-Plan study:
 FDG PET only based target vs. PET plus CT-

A Locoregional progression per-protocol analysis

based target and elective node delineation X 0755101030106 8061937061
 N=205 non-small cell lung cancer (NSCLC) £ a
patlents .Té: 60— —— Conventional target
< — BF-FDG PET-based target
* Dose escalation (60 =74 Gy).in 2-Gy fx =
Y 40
* Primary.endpoint: Time to local progression £ o
. el £ 20-
(non-inferiority) 5
* “Risk of locoregional progression 14% vs. 29% at A S R S S R
1 yea r’ HR 0.57 (nur?ll)j;:t:;:ct)r:j;

Conventional target 84 (0) 48 (20) 37(24) 34 (25) 32(27) 28 (30) 25(33)
*“F-FDG PET-based target 88 (0) 59(23) 52(27) 44(35)  40(39) 39(40)  34(44)
11 —_—




Focal MRI-guided RT dose escalation in prostate cancer:
The FLAME trial

Kerkmeijer LGW, et al. J Clin Oncol 2021; 39: 787-96.

e N=571 intermediate- and high-risk prostate bR

. 1.00
cancer patients
* Standard treatment: 77 Gy (2.2 Gy/ fx) oA
* Focal boost: up to 95 Gy to the %
intraprostatic lesion defined on multi- 3 050
parametric MRI. S
* Significantly higher biochemical disease- = e
free survival (bDFS) in focal boost arm
(p<0.001) :I?::Z:jtalz}dnst
0.00 , I T T T T 1
*  5-year bDFS: 92% vs. 85% Coomr 3o e T

Time in Years
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Hypoxia PET has prognostic value in HNC

Thorwarth D, et al. J Nucl Med 2019; 60(12): 1698-1704.

* Dynamic FMISO PET/CT (0 — 4 h pi)

e 2-parameter signature of dyn. FMISO analysis i[?_"-. )
is prognostic for local control (LC) after HNC RT - J | | :;:Qx;c_
* Independent validation in n=33 patients 4
c
e Potential basis for RT personalization! S
)
S
e FMISO is anon-standard PET tracer, low SNR _ hypoxic_ AUC=0.88
0<0.0001
e Complex image acquisition and analysis ‘ . . . . . .
protocol Time after RT [months]
-
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18EMISO PET/CT

Welz S, Thorwarth D, et al. 2021 (in preparation). 4hpi

 Randomized phase Il trial (NCT 02352792)
* N=54 HNC patients

 Hypoxic patients randomized into dose
escalation (77Gy) vs. standard RT (70 Gy)

no hypoxia

1.00 + h o,
e Slow accrual (12/09 —03/17) Dee Printing
\ . A 8. - hypoxia,
e Complex moelcularimaging and logistics | " standard IMRT

 Premature closing

local recurrence
o
w
[=]

Hypoxic vs. Non-

025 hypoxic: p = 0.011*

p=0028 Hypoxia DP vs. Std.
RT: p=0.16

* Hypoxia dose painting is clinically feasible!

* Non-=significant improvement of LC
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Time [months]



Dose escalation based on FMISO PET in NSCLC

Vera P, et al. J Nucl Med 2017; 58: 1045-53. 1.00 -
— 18p. <56
 n=54/79 patients [ _— 18;.:::281’ r’aeeyey
2 0.75.4 < PR MISO + 1 BiGy

e FMISO PET 2
« FMISO- 66Gy % -
*  FMISO+ up to 78 Gy a L
e Dose escalation to HV 0.25 - [
«  HV defined by SUV=1.4 e

0 ' . '

0 24 30 36

e _FMISO strongly associated with poor prognosis
e No effect of DE on LC




Prognostic value of hypoxia PET/CT in HNC before and during\BT

Lock S, et al. Radiother Oncol 2017;124:533-40.
Zips D, et al. Radiother Oncol 2012;105:1-8.
Zschaeck S, et al. Radiother Oncol 2020; 149: 189-96.

e Exploration trial (n=25) and validation study (n=25) e Highest prognostic value: FMISO TBR assessed after
e [18F]-FMISO PET/CT before and after 2 weeks of RT 2 weeks of RT

e Assessment of different image parameters e Or: residual hypoxic volume (rHV)
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Riaz N, et al. J Natl Cancer Inst 2021; epub.

Lee N, et al. Int J Radiat Oncol Biol Phys 2016;96:9-17.

In HPV+ oropharyngeal patients
without FMISO detectable
hypoxia at baseline or in week 1
of RT (n=15/19):

 Dose de-escalation to30 Gyto
gross nodal desease and post-
operative tumor bed

Excellent local control in-dose de-
escalation group: 94%.
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Kim S, et al. Clin Cancer Res 2009;15:986-94.

N=40 HNC patients

DW-MRI before, during and
after RT

Pre-Tx ADC lower in CR
compared to PR (p<0.05)

Significant prognostic value of
ADC in.week 1 for CR (p<0.01)

C

HE ]
0 {ms) 250 0.5 (x10° mm?is) 2.5

Clinical
Cancer Research



The prognostic value of ADC in HNC is controversially discussad

Peltenburg B, et al. Eur Radiol 2020; 30:1228-31. ROC Curve
e N=217 HNC patients treated with (chemo-)RT
* Pre-treatement DW-MRI

#7 | = Tstage +ADC

= = Reference Line

 Similar median ADC values in patients with and
without recurrence

Sensitivity
=

* No significant association between ADC and
recurrence (p=0.09)

 T-stage was independent predictor of local
recurrence. 0ok’

0.0 0.2 0.4 0.6 0.8 L0

Driessen JP, et al. Eur J Radiol 2019; 111: 62-7. 1 - Specificity

e Similar diagnostic accuracy of DW-MRI and FDG PET.
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Combination of PET- and MRI-parameters allows patient
stratification

b Regmefclgelfuiye —
o 3 102 (N= 27 patients)
Martens RM, et al. Eur Radiol 2021; 31: 616-28. li : g P
e N=70 HNC patients treated with curative chemo-RT B g
 Baseline imaging: §
> (IVIM) DW-MRI { |
N DCE'M RI L!;,es.h:lf!s.
- FDG PET I | Aocmvsassasens
° w @™ m» @ % e  Ktrans>0.5580 min-
. . o . Time In months > 1.0490 min-*
e Significant correlation between FDG PET and ADC -
d Qverall Survival
* Combination of HPV, intoxications, ADC, K, and v, E M

I 538 (N= 42 patients)

was predictive for locoregional recurrence free survival .. P

e Thresholds:

HPV = 1

N-stage >1

Location PT = 1
Intoxications = 1
ADCery >0.5506 cm®
ADCenean>1.1912 (x10° mm?/s)
Ktrans > 0.5580 min—*
o P=0.046 Ve >1.0490 min~!

D* > 0.1666 mm?/s
SUVimax > 8.42 (Bq)
LG > 42.73 (Bq*cm?)

. Functional imaging techniques yielded complementary
value in capturing tumor characteristics.

Cumulative Survival

0.2
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Time in months




Leibfarth Set al. EEINMMI 2016;43(7):1199-208.

Spearman correlation
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Rasmussen JH, et al. J Nucl Med 2017; 58: 69-74.

N=21 HNC patients
Prospective scan-rescan study

Assessment of overlap between ADC-and FDG-
based RT target volumes

Olin AB, et al. Int J Radiother Oncol Biol Phys 2020; 108: 1329-38.

N=11 HNC patients

Direct usage of PET/MRI for RT planning
investigated

Synthetic CT determined from Dixon-MRl,
comparison to PET/CT

Volume scan 2

® GTVT2
® GTVpgr
A GTVpw, B

I I I I I
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Imaging Biomarker Roadmap for Cancer Studies

O‘Connor JPB, et al. Nat Rev Clin Oncol 2017; 14(3): 169-86.
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Technical Requirements for using Quantitative Imaging in RF

Gurney-Champion O, et al. Radiother Oncol 2020; 146: 66-75.

* Imaging in RT position!
* Dedicated positioning aids and coils needed
* Eventually image registration in addition helpful

e Geometrical accuracy is a prerequisite for functional imaging based RT personalization

 Quantitative imaging information required

* Reproducible measurement of quantiative information
* Image processing and analysis

 Technical requirements depend.on the level of intervention
* Contouring
* Dose prescription
* Dose painting




Development of a dedicated hardware solution for RT-patient
positioning during hybrid PET/MR imaging

= RT table overlay:
* Above spine coil
* RT indexing system

= REmaskifixation:
e Add-on to table overlay

= RFoil holders (CH):
* Fixation for flexible coils (6-
channel body matrix)
e Patient positioning with
mask fixation possible

Prototype of table averlay and coil holder
for Biograph mMR (Siemens), in
cooperation with

25




diagnostic
setup

Winter R, et al. Radiother Oncol 2018; 128(3):485-91.
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Implementation of a RT-simulation protocol on a 3 T MR] for\HNC

* Patient positioning in RT
mask

* Flat table top incl. mask
fixation

* Flexible coil (18-channel)

 RT simulation protocol on
a 3 T MRI (~20 min):
* T2w TSE (1.3x1.3x4'mm?3)

* DWI EPI RESOLVE (3x3x5 mm?3,
IVIM, 8 b-vaues)

* DCE (GRASP, 1.1x1.1x2 mm?3)

* High resolution T1w post contrast
(1x2x1 mm?3, VIBE + Dixon fat sat)




Hybrid MR-Linacs offer optimal basis for RT personalization

Magnetron

Waveguide

1.5T wide-bore
MRI

/4
Multileaf
\. collimator

Treatment
beam

Unity, Elekta AB, Sweden




...but also for functional image acquisition

* Investigation of quant. MR-
imaging (qMRI) on MR-Linacs

e Determination of accuracy,
reproducibility and
repeatability of T1, T2, ADC
and DCE

* Acquisition of gMRI using
hybrid 1.5 T MR-Linacs is
possible

QIBA-Phantom

Kooreman
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HNC patients treated (35
fx) on the 1.5 T MR-Linac

DW-MRI 1x/week

Test/re-test before and
after RT fraction

Delineation of GTV, LN,
submandibular and
parotid glands

Assessment of
repeatability coefficient
(RC) and within-subject
coeff. Of variation (wCV)
onvolume- and voxel-
level

Sub- Parotid
mand. glands
- RC [10°®* mm?Z/s] 217.5 81.0 334.5 177.8
wCV [%] 6.2 3.3 8.3 5.5
RC [10®* mm?2/s] 695.7 541.1 939.1 797.3
Voxel-level
wCV [%] 23.6 32.4

Work in progress, University of Tiibingen
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Sequential DW-MRI in HNC during fractionated RT

baseline fx 03 fx 13 fx 25

30 | Volume change during RT

T2w RMI

0 5 10 15 20 25 30 35
fractions
2000

1500

1000

ADC map DW-MRI

Change of mean ADC during RT

500 ‘
0

mean ADC value [ 105 mm?Z/s)

5 10 15 20 25 30 35

Work in progress, University of Tiibingen fractions



Imaging Biomarker Roadmap for Cancer Studies

O‘Connor JPB, et al. Nat Rev Clin Oncol 2017; 14(3): 169-86.
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Future of IGRT: Response adaptive IGRT

Response measure Adaptation strategy Therapeulic consequence

[ Tumour shrinkage ]—)[ Adapt treatment fields ]——-){ Less side effects ]
[ Tumor localization ]—){ Re-optimize RT plan ]w——){ Better outcome ]
J

Lower toxicity rates

[ Hypoxlc status ]—-\—’[ Increase radiation dose ]—?L ‘mmv.d cure rates
3
\.{ Decrease radiation dose ]————){ Less side effects

Response

imaging

Response assessment
Volur changes

Response L
Adaptive —

Radiotherapy _T.p;'llﬁ? . Gregoire V et al., Molecular Oncology 14 (2020) 1470-1491

radia

33 —




Autonomous, un-supervised planning pipeline

Online adaptive MRgRT
‘ CT-Simulation CT + structure set automatic MRgRT Plan’
Ausonclolkis Check.pomt fgr human
iInteraction

Kiinzel LA et al., Radiother Oncol 2021; 159:197-201




Conclusions

1. High-resolution IGRT has become a mainstay of modern RT.

2. IGRT has widened the therapeutic window: it allows to safely deliver radiation dose
with tumor coverage and sufficient radiation-dose while sparing normal tissue

3. IGRT is a major contribution of radiation oncology for cancer medicine for virtually all
patients

4. IGRT will remain a driving force for research and development

5. IGRT is-a core technology towards Precision (Personalized) Radiation Oncology
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