

Re-irradiation in breast cancer

Expert: **Dr Gustavo Nader Marta**, Hospital Sírio-Libanês, São Paulo, Brazil

Discussant: **Prof Pierfrancesco Franco**, University of Eastern Piedmont, Novara, Italy

Discussant: **Dr Ivica Ratosa**, Institute of Oncology Ljubljana, Ljubljana, Slovenia

Extract from the e-ESO policy

The website contains presentations aimed at providing new knowledge and competences, and is intended as an informational and educational tool mainly designed for oncology professionals and other physicians interested in oncology.


These materials remain property of the authors or ESO respectively.

ESO is not responsible for any injury and/or damage to persons or property as a matter of a products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material published in these presentations. Because of the rapid advances in medical sciences, we recommend that independent verification of diagnoses and drugs dosages should be made. Furthermore, patients and the general public visiting the website should always seek professional medical advice.

Finally, please note that ESO does not endorse any opinions expressed in the presentations.

SÍRIO-LIBANÊS

European School of Oncology
eso.net | e-eso.net | esco.org

Re-irradiation (ReRT) in breast cancer

Gustavo Nader Marta

Department of Radiation Oncology, Hospital Sírio-Libanês, São Paulo, Brazil

Conflicts of Interest Statement

- None to declare

Re-irradiation in breast cancer

1 – Introduction

2 – Second breast conserving treatment

3 – Chest wall recurrence

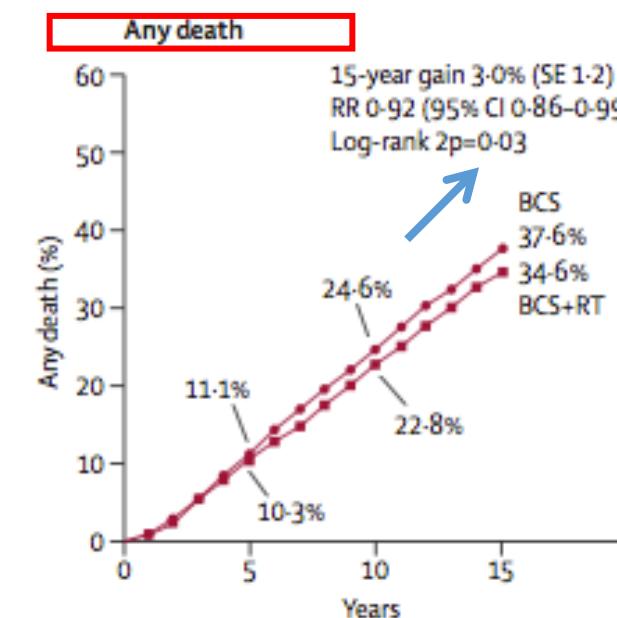
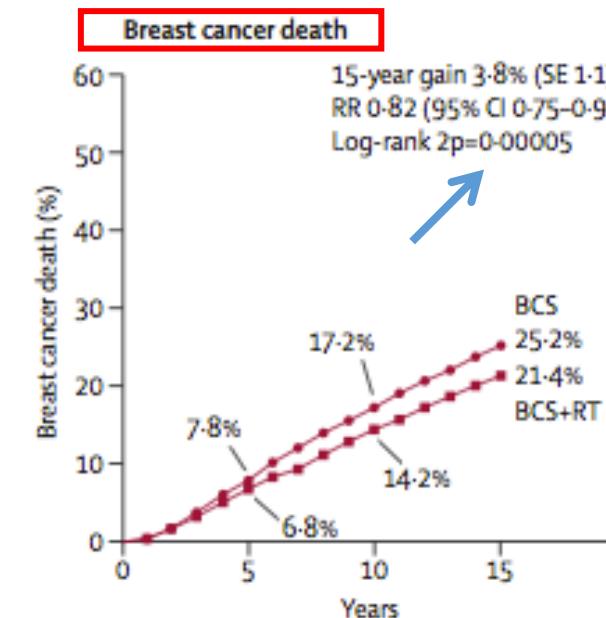
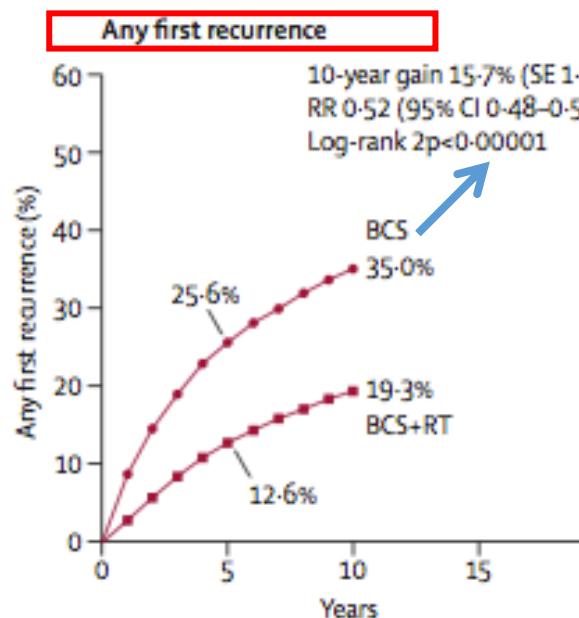
4 – Conclusions

Re-irradiation in breast cancer

1 – Introduction

2 – Second breast conserving treatment

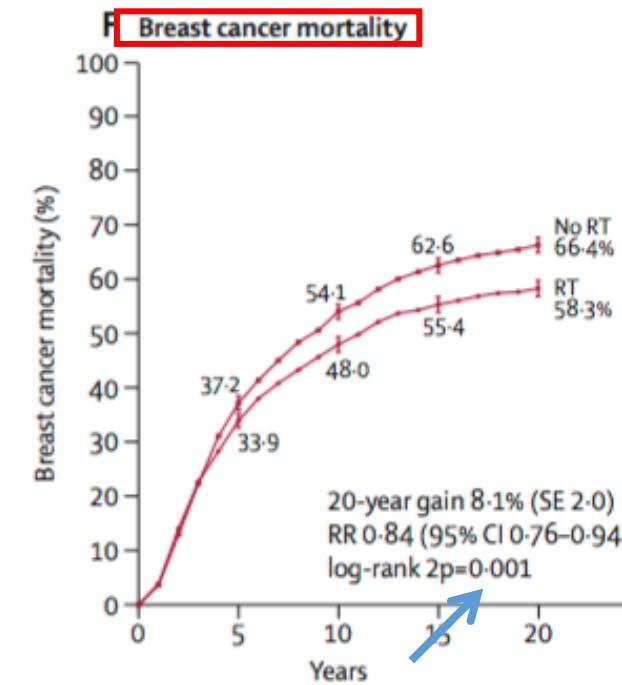
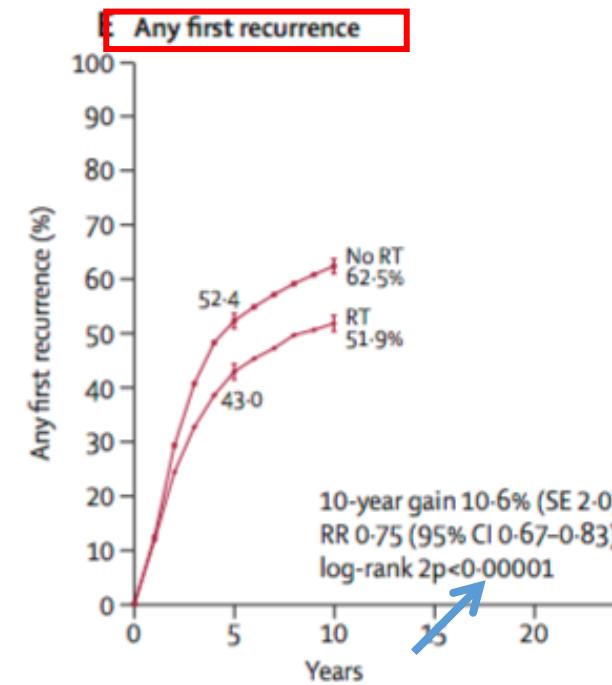
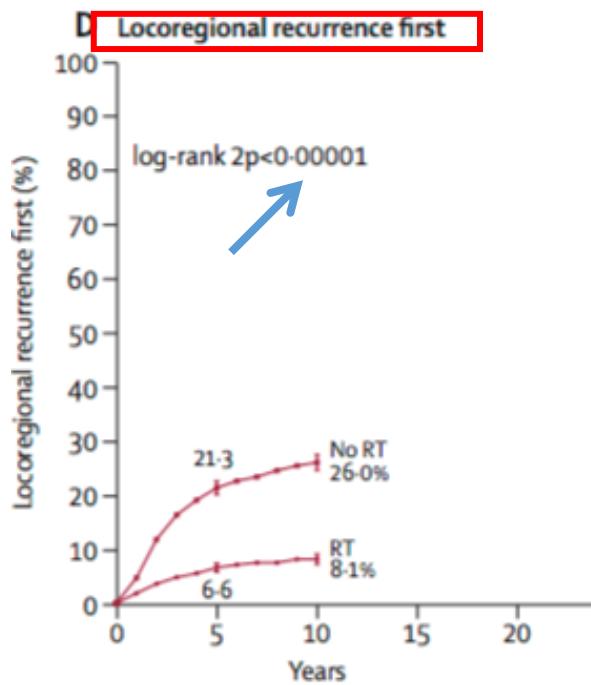
3 – Cheat wall recurrence




4 – Conclusions

Introduction

- Radiotherapy (RT) is an integral part of breast conserving therapy

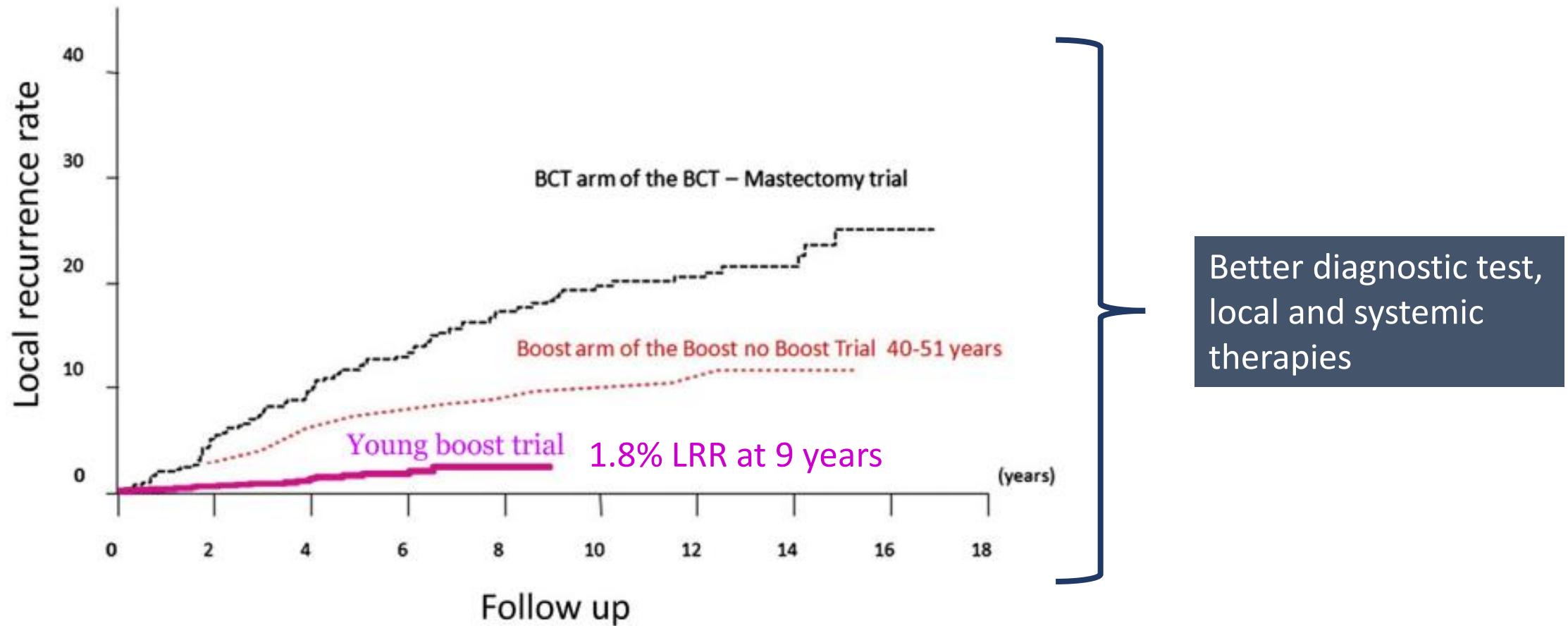
Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10 801 women in 17 randomised trials




Early Breast Cancer Trialists' Collaborative Group (EBCTCG)*

Introduction

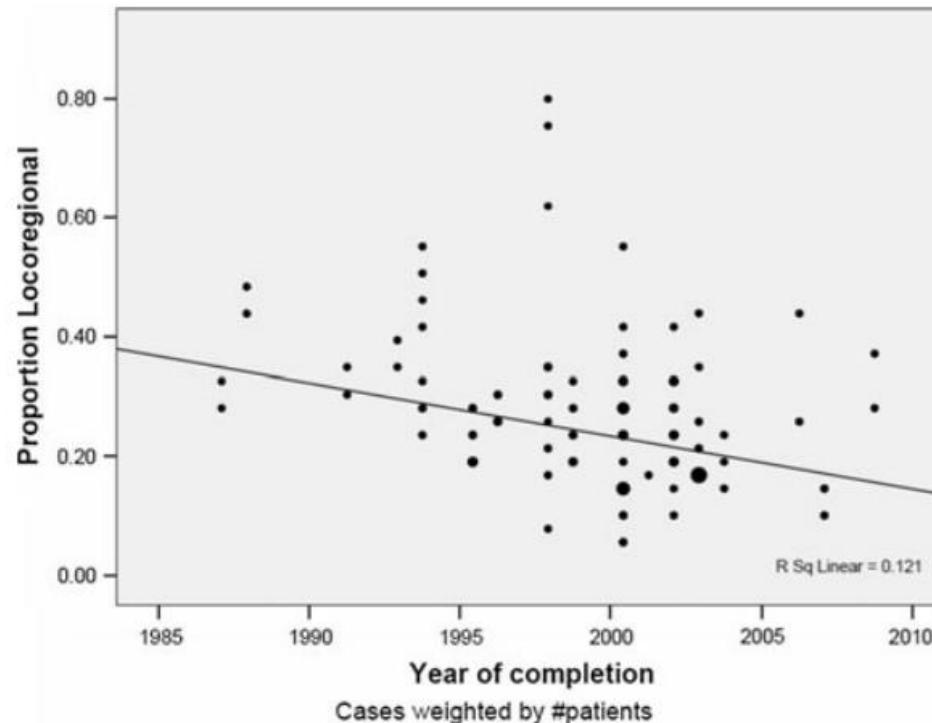
Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials

EBCTCG (Early Breast Cancer Trialists' Collaborative Group)*

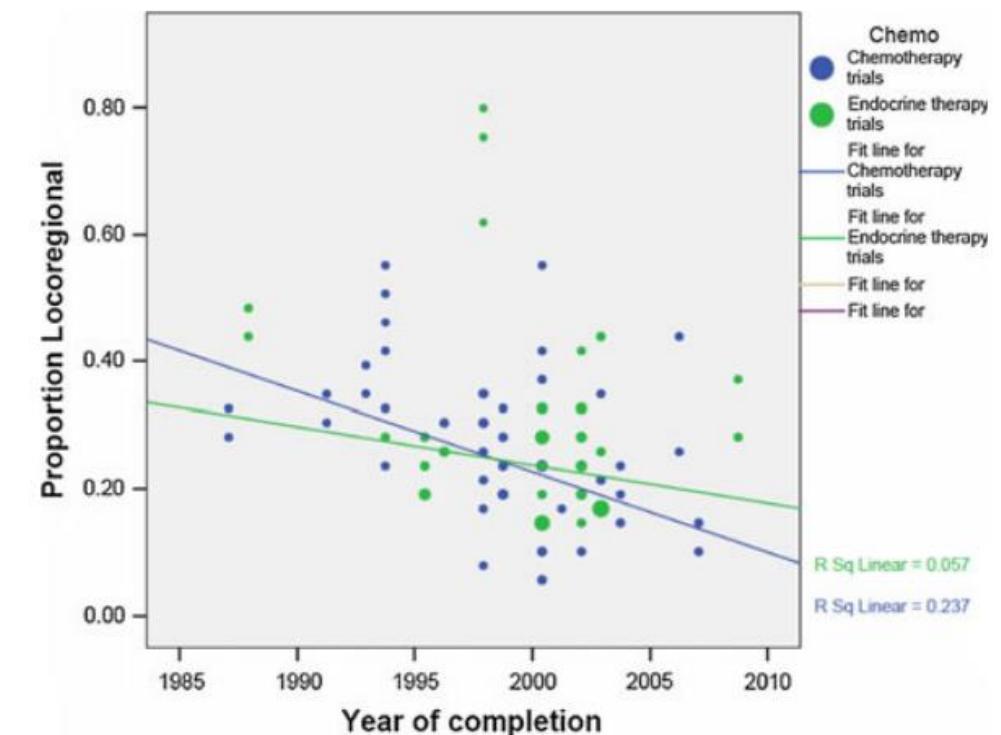


Introduction

- Older series: local ipsilateral breast tumour recurrence
 - Breast-conserving therapy: 20-year incidence rate of **15 -20%**
 - Mastectomy: 10-year incidence rate of **10-20%**

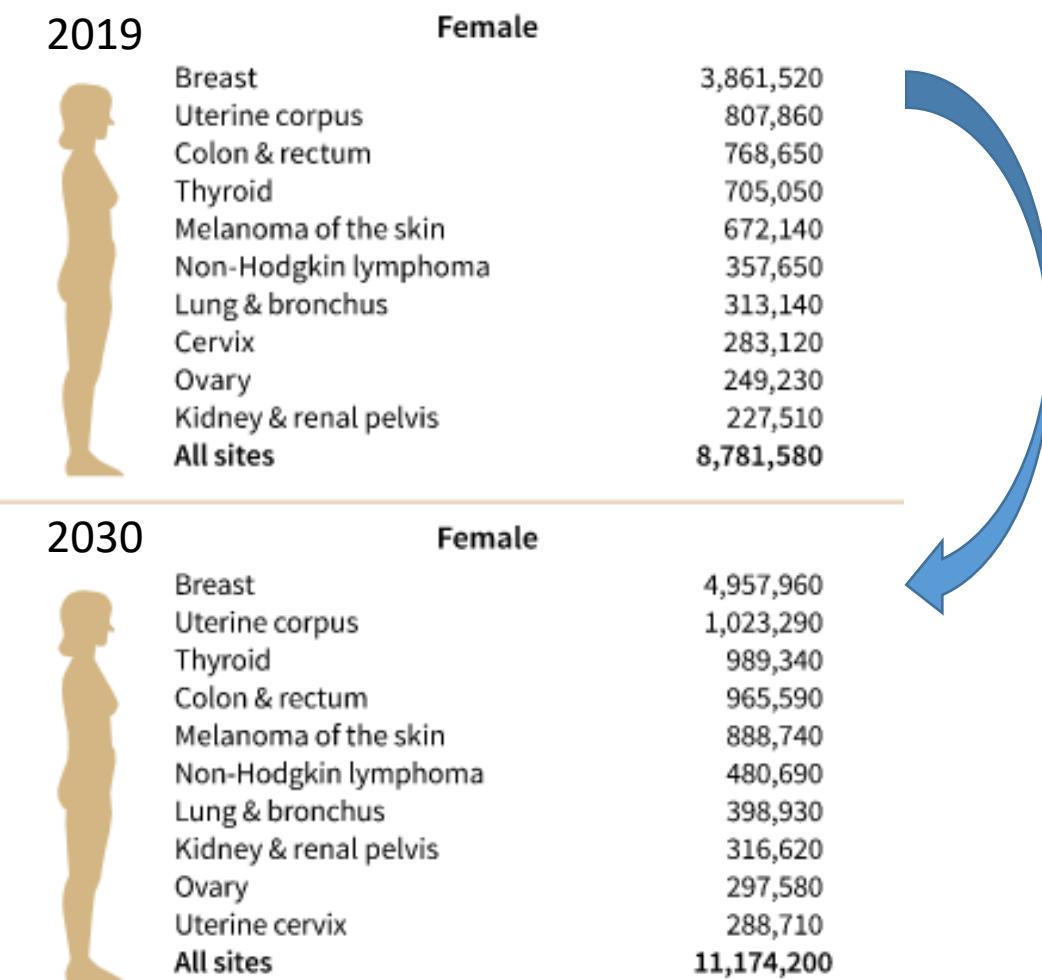

Introduction

Local breast recurrence rate in three consecutive trials on breast-conserving therapy from 1980 till 2012



Introduction

Proportion of locoregional recurrences over time


Proportion of locoregional recurrences for endocrine and chemotherapy over time

Over the last 20 years -> Down to 10-15% of all recurrences

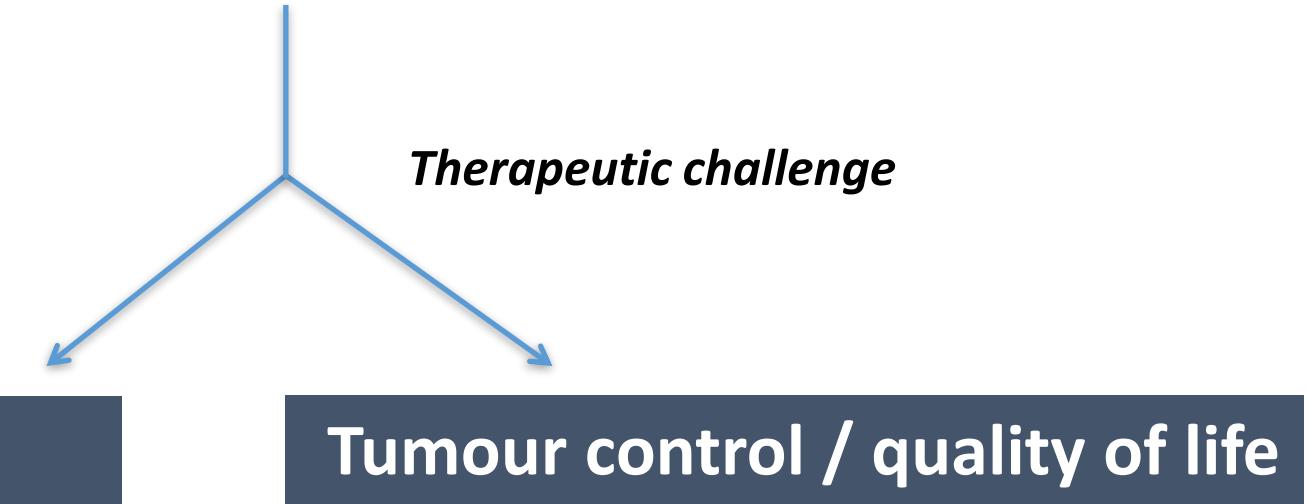
Introduction

Estimated Number of US Cancer Survivors by Site – SEER database

The number of breast cancer survivors will increase by **22%** between 2019 to 2030 (**> 1 million**)

More patients with breast ipsilateral recurrence

More patients will need a second local treatment (ReRT)


Introduction

Tumour recurrence

Tumours are heterogeneous
Patients are heterogeneous

Reirradiation

Therapeutic challenge

Side effects

Tumour control / quality of life

Treatment options for in-field relapse involve surgery, systemic therapy and ReRT

Introduction

- **Decision on ReRT needs to consider:**

- 1 - Localisation of the second tumour in relation to the initial radiation treatment volumes, and so the previous exposure of organs at risk;
- 2 - Parameters of the initial radiotherapy: dose, fractionation and volume;
- 3 - Combination therapy for the first tumour (chemotherapy, 'biologicals');
- 4 - Time interval from the treatment of the first tumour with regard to potential tissue-specific morbidity after ReRT and its impact on the patient's quality of life.

Introduction

- **ReRT aspects:**

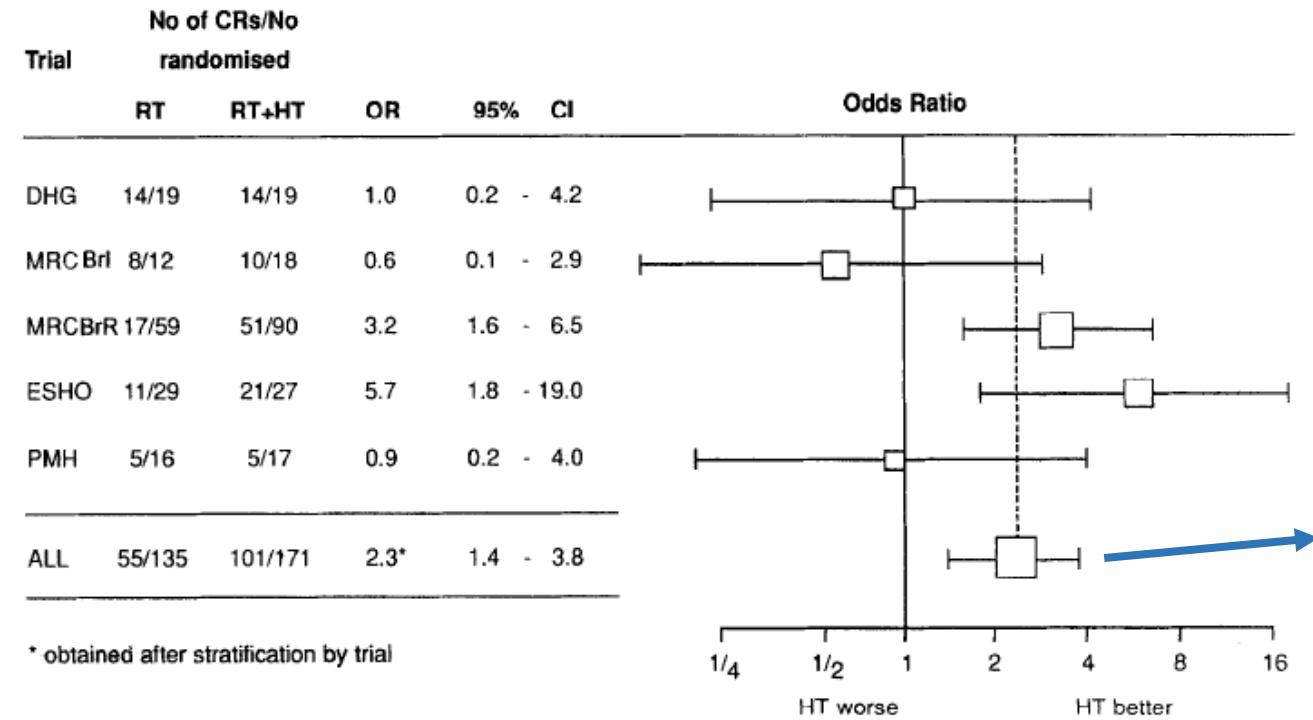
1 - Different techniques can be used for ReRT. The largest experience comes from **brachytherapy**, but **external-beam irradiation** is a well-documented option for ReRT. However, the clinical indications for ReRT, techniques, ideal doses and fractionation schemes have not yet been clearly defined.

Introduction

• ReRT aspects

Several studies have reported using **hyperthermia** with **ReRT** for the management of breast cancer recurrence.

Hyperthermia is a radiosensitizer that increases tumour temperature, decreasing intratumoral hypoxia and reducing sublethal damage repair in the malignant cells.


Oliver J. Ott and Manfred Schmidt.
Hyperthermia and Reirradiation, 2017

Introduction

- ReRT with hyperthermia

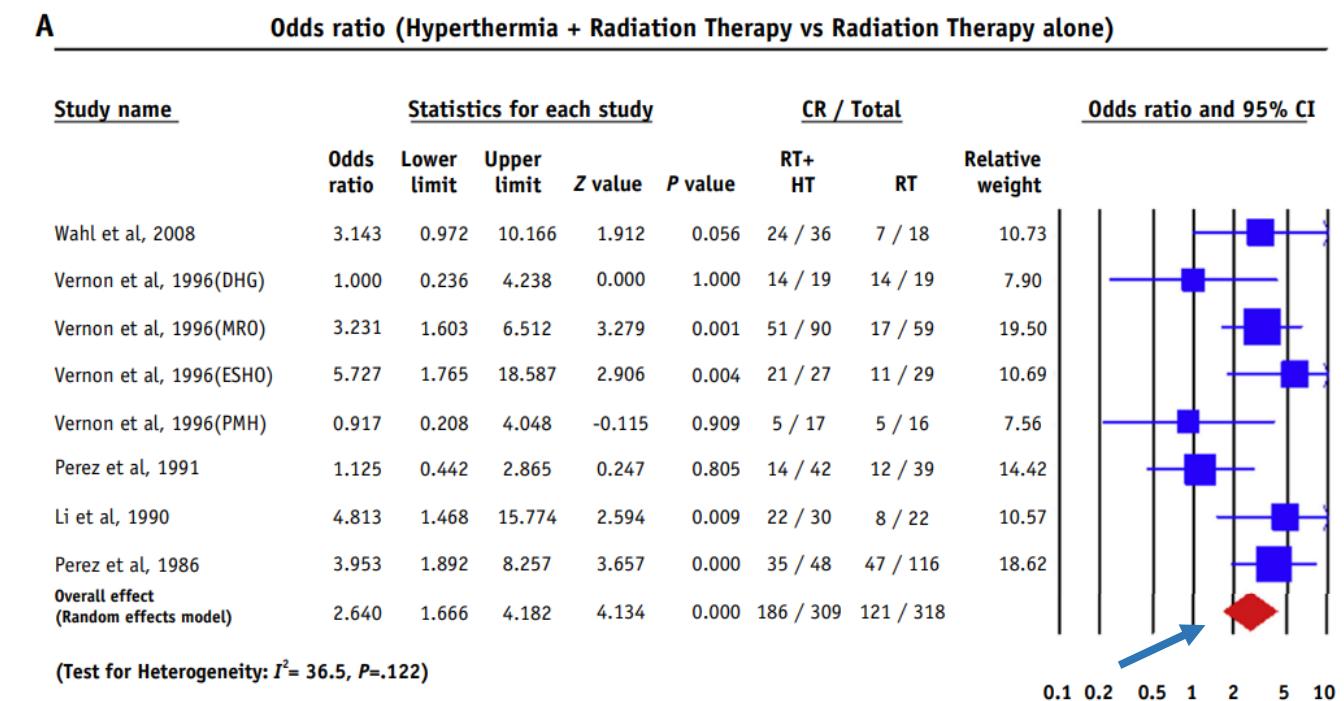
RADIOTHERAPY WITH OR WITHOUT HYPERTERMIA IN THE TREATMENT OF SUPERFICIAL LOCALIZED BREAST CANCER: RESULTS FROM FIVE RANDOMIZED CONTROLLED TRIALS

1988 to 1991

Overall complete response:
41% vs. 59%

Introduction

- ReRT with hyperthermia


Hyperthermia and Radiation Therapy in Locoregional Recurrent Breast Cancers: A Systematic Review and Meta-analysis

34 studies

Eight were 2-arm (randomized, n=5; nonrandomized, n=3), whereas 26 were single-arm studies.

Median of 7 HT sessions (average temperature of 42.5°C)

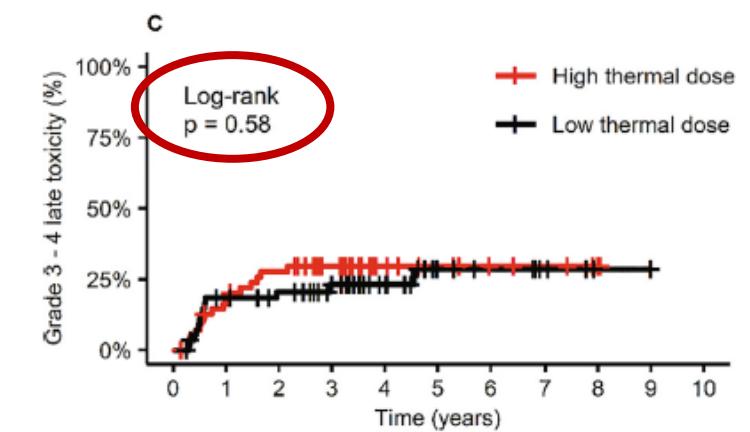
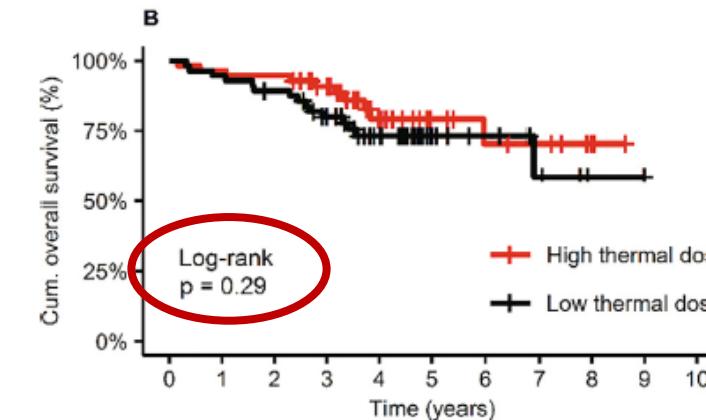
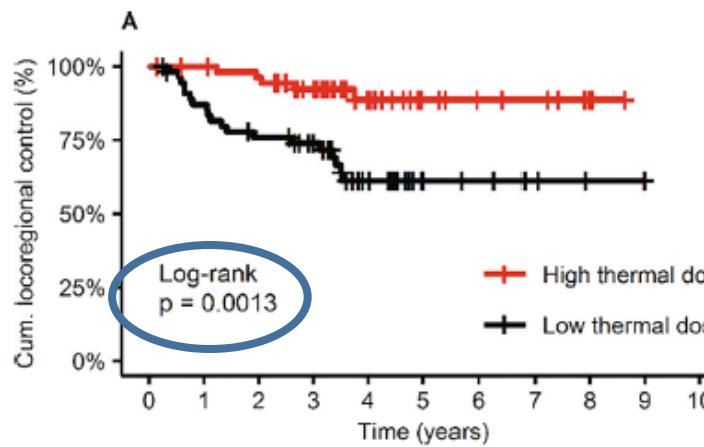
Mean RT dose: 38.2 Gy (range, 26-60 Gy)

In the 2-arm studies
Complete response: 60.2% RT + HT versus 38.1% RT alone

Introduction

• ReRT with hyperthermia

Post-operative re-irradiation with hyperthermia in locoregional breast cancer recurrence: Temperature matters

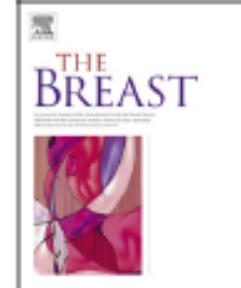



To assess the impact of hyperthermia thermal dose (TD)

Retrospective study (n = 112)

Resected locoregional recurrent breast cancer

ReRT 8frx4Gy (n = 34) or 23frx2Gy (n = 78)

4–5 weekly hyperthermia guided by invasive thermometry: 'low' (n = 56) and 'high' TD (n = 56)


Reirradiation

Contents lists available at [ScienceDirect](#)

The Breast

journal homepage: www.elsevier.com/brst

Review

Reirradiation for locally recurrent breast cancer

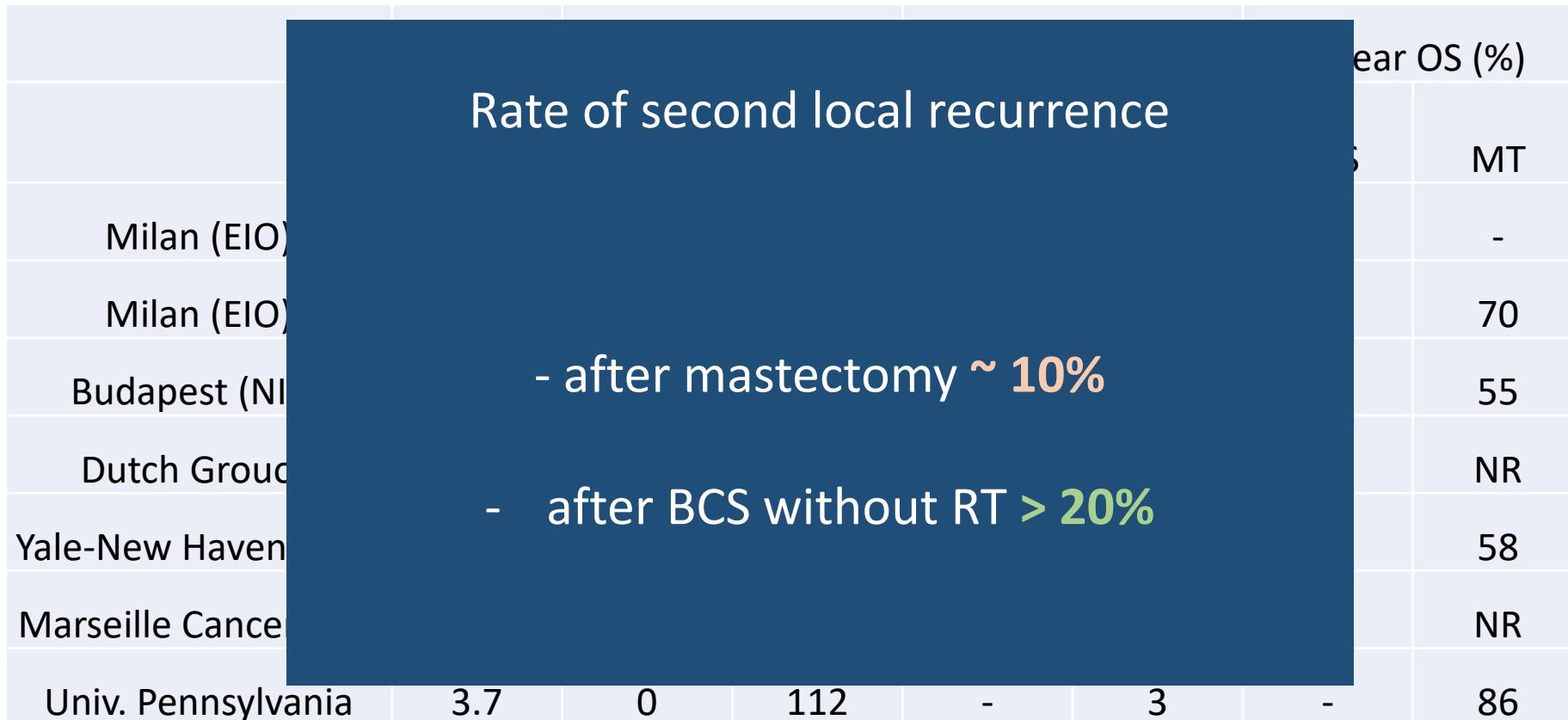
Gustavo Nader Marta, MD, PhD ^{a,*}, Tarek Hijal, MDCM, MSc ^b,
Heloisa de Andrade Carvalho, MD, PhD ^c

Evidences for ReRT?

Re-irradiation in breast cancer

1 – Introduction

2 – Second breast conserving treatment


3 – Chest wall recurrence

4 – Conclusions

Reirradiation

- Second breast-conserving curative treatment and ReRT

BCS without RT versus mastectomy

Reirradiation

- Breast ReRT with brachytherapy (PBI – *Partial breast irradiation*)

Partial breast re-irradiation with brachytherapy.

Authors	Year of publication	# pts	MFU (months)	Irradiation techniques	Dose (Gy)		3 rd IBTE-FS (%)	OS	≥ G3 tox. (%)	
					Total (Gy)	Dose/f Dose rate				
Maulard C et al. [12]	1995	38	48	MIB LDR	30	–	a)	5 y 4 y	55 70	8 0
Resch A et al. [13]	2002	17	59	MIB PDR EBRT	12.5 30	0.5–1	b)	5 y 1.5 y	91.8 68.7	10.2 3
Hannoun-Levi JM et al. [14]	2004	69	50	MIB LDR	30–50	–	77.4	–	–	–
Niehoff P et al. [15]	2005	21	–	–	–	–	–	–	–	–
Chadha M et al. [16]	2006	21	–	–	–	–	–	3 y 10 y	100 96.7	0 0
Guix B et al. [17]	2006	21	–	–	–	–	–	–	–	–
Hannoun-Levi JM et al. [18]	2006	21	–	–	–	–	–	–	–	–
Kauer-Dorner D et al. [19]	2006	21	–	–	–	–	–	5 y 5 y 10 y	87 88.7 76.4	17 11 –
GEC-ESTRO [6]	2006	21	–	–	–	–	–	–	–	–
Trombetta M et al. [23]	2007	21	–	–	–	–	–	–	–	–
Smanyko V et al. [20]	2007	21	–	–	–	–	–	5 y	81	8
Montagne L et al. [21]	2007	21	–	–	–	–	–	6 y	91.2	–
Forster T et al. [22]	2019	19	65	MIB PDR HDR	49.8–50.4 34.2–32	0.5–0.7 3.4–3.8	100	5 y	100	0

pts: number of patients; MFU: median follow-up; Dose/f: dose per fraction; Dose rate in Gy per hour; BID: dose given twice a day; 3rdIBTE-FS: third ipsilateral breast tumor event free survival rate; 3rdIBTE: third ipsilateral breast tumor event rate; OS: overall survival; ≥ G3 tox.: grade 3 and higher toxicity rate; MIB: Multicatheter interstitial brachytherapy; LDR: low-dose rate; PDR: pulsed-dose rate; HDR: High-dose rate; EBRT: external beam radiation therapy.

a 21% of 3rdIBTE rate.

b 24% of 3rdIBTE rate.

c 3% of 3rdIBTE rate.

d 11% of 3rdIBTE rate.

Rate of second local recurrence
- after BCS + RT(brachy) ~ 10%

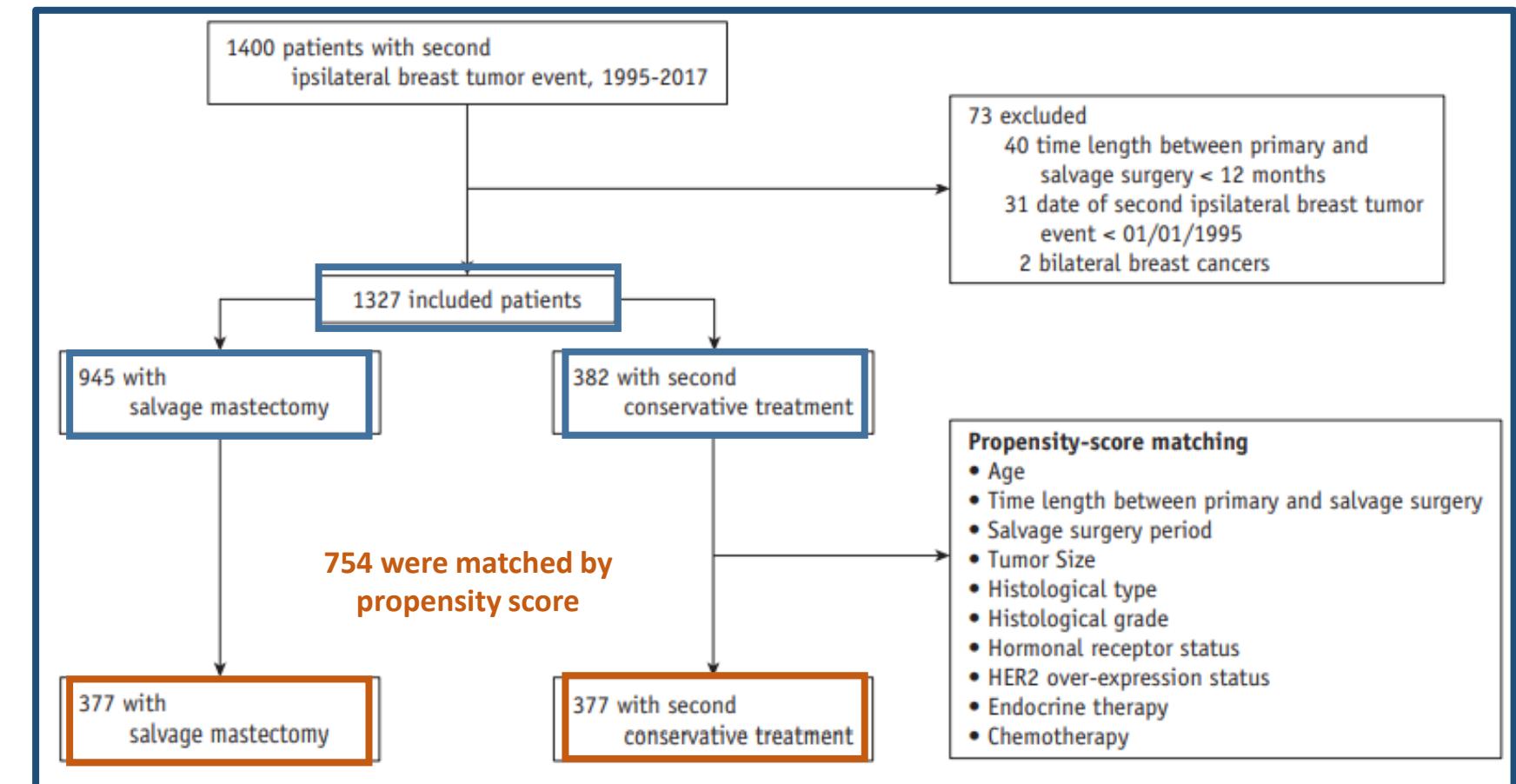
Reirradiation

- 2nd BCT versus mastectomy

INTERNATIONAL JOURNAL OF
RADIATION ONCOLOGY • BIOLOGY • PHYSICS ASTRO

Salvage Mastectomy Versus Second Conservative Treatment for Second Ipsilateral Breast Tumor Event: A Propensity Score-Matched Cohort Analysis of the GEC-ESTRO Breast Cancer Working Group Database

Jean-Michel Hannoun-Levi, MD, PhD, * Jocelyn Gal, PhD, †
Erik Van Limbergen, MD, PhD, ‡ Marie-Eve Chand, MD, *
Renaud Schiappa, MSc, ‡ Viktor Smanyko, MD, §
Daniela Kauer-Domer, MD, ‖
David Pasquier, MD, PhD, ¶ Claire Lemanski, MD, #
Séverine Racadot, MD, ** Gilles Houvenaeghel, MD, ††
Benjamin Guix, MD, PhD, ‡‡ Aurélie Belliere-Calandry, MD, §§
Kristina Loessl, MD, ‖‖ Bulent Polat, MD, PhD, ¶¶
Cristina Gutierrez, MD, PhD, §§ Razvan Galalae, MD, PhD, ***
Csaba Polgar, MD, PhD, §¶¶ and Vratislav Strnad, MD, PhD †††


Reirradiation

- 2nd BCT versus mastectomy

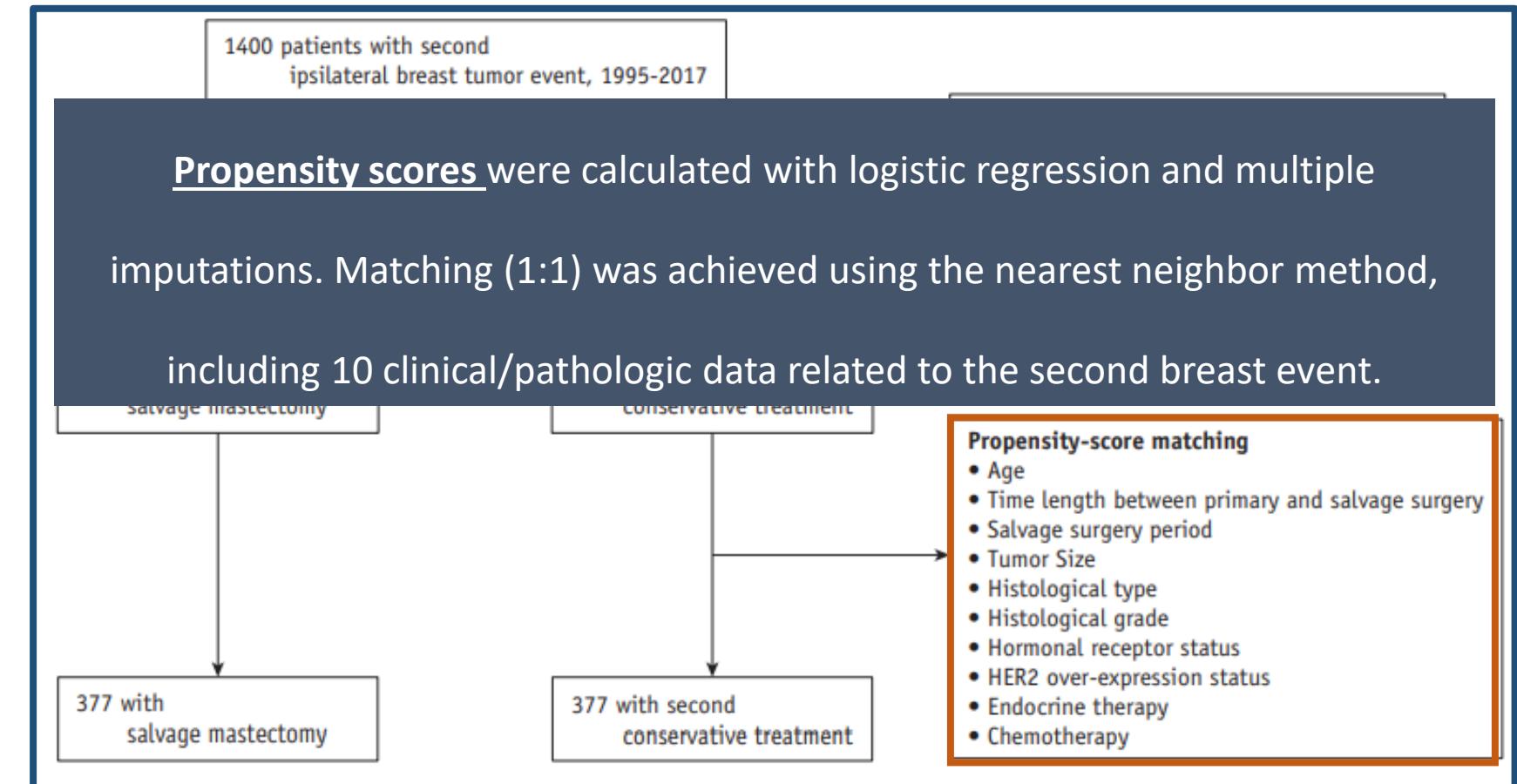
GEC-ESTRO study

- 01/1995 to 06/2017
- 15 hospitals/cancer centers in 7 European countries

Patients were offered mastectomy or lumpectomy plus brachytherapy

Reirradiation

- 2nd BCT versus mastectomy

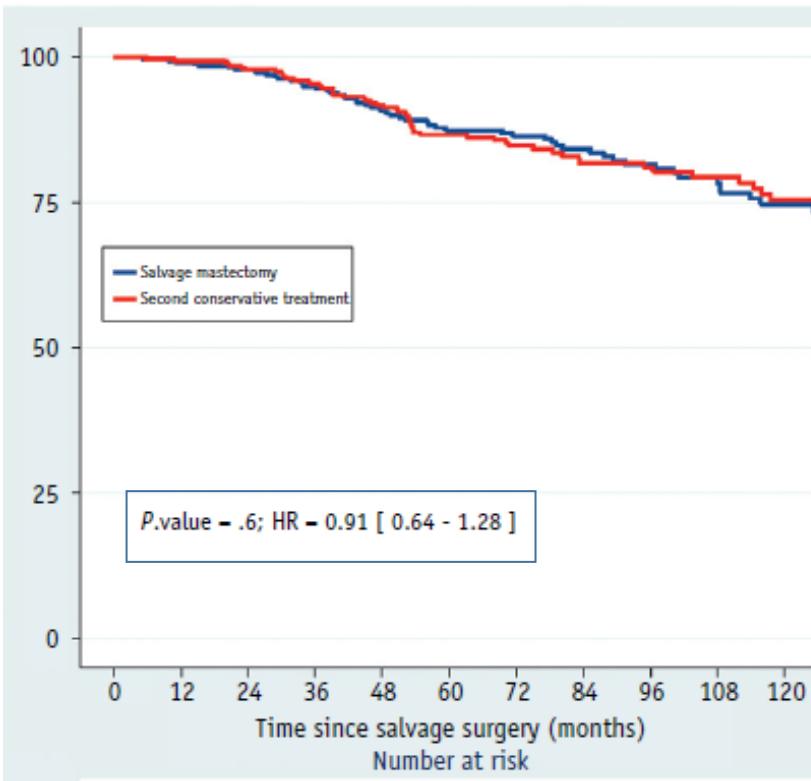

GEC-ESTRO study

Primary endpoint:

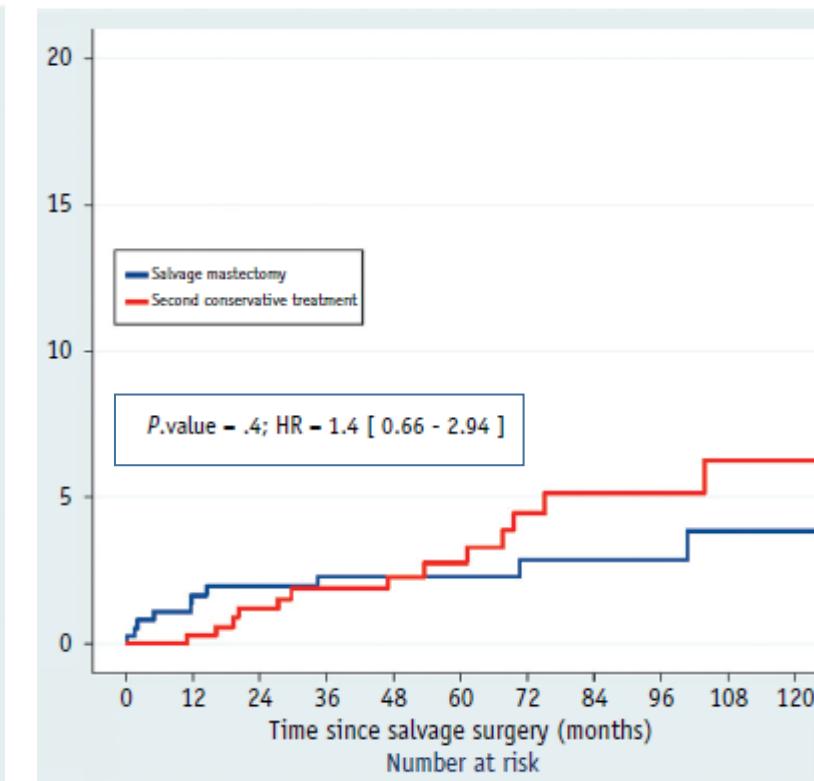
- 5-year OS from the salvage surgery date

Secondary endpoints:

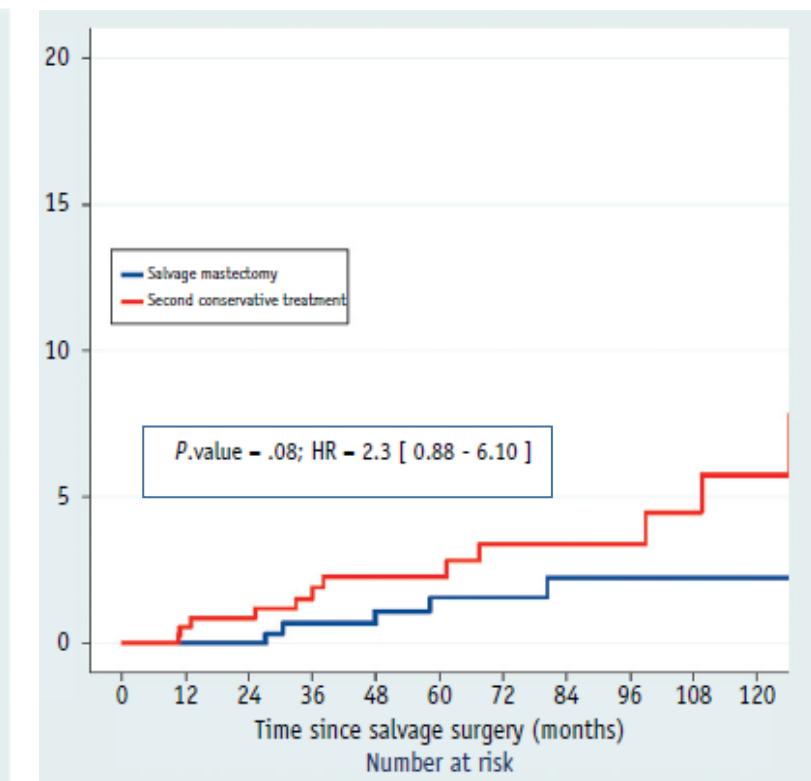
- 5-year cumulative incidence of third breast event
- Regional relapse and distant metastasis
- Disease-free and specific survival.



Reirradiation


- 2nd BCT versus mastectomy

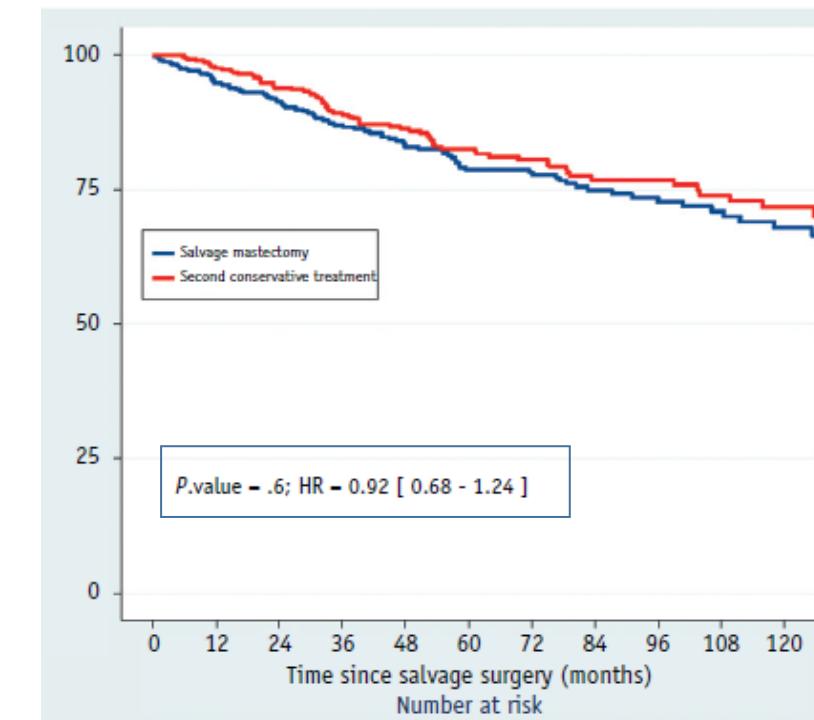
GEC-ESTRO study


Overall survival

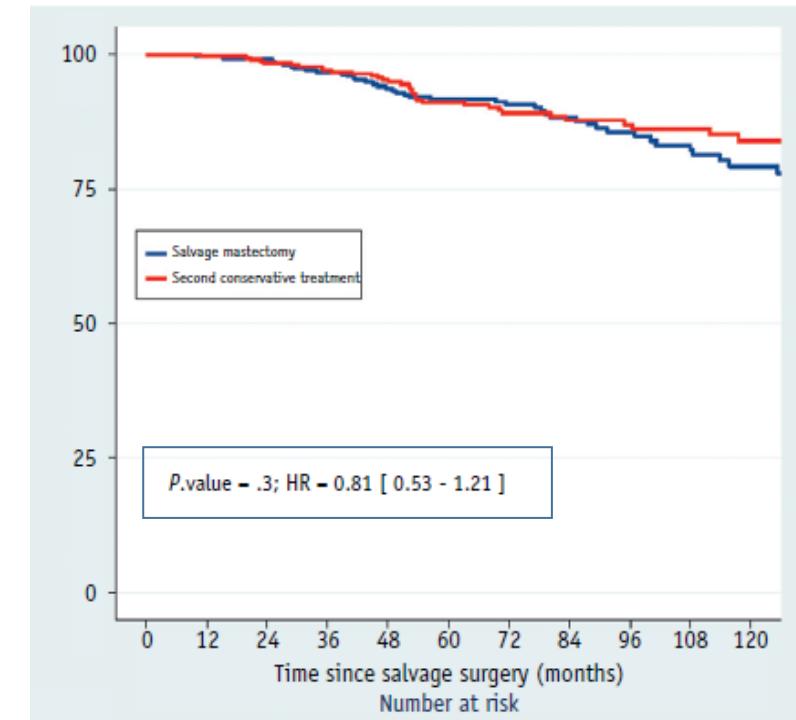
Incidence of third ipsilateral breast tumour event

Incidence of regional relapse

Reirradiation


- 2nd BCT versus mastectomy

GEC-ESTRO study


Incidence of distant metastasis

Disease-free survival rate

Specific survival

Reirradiation

- 2nd BCT versus mastectomy

GEC-ESTRO study

Table 3 Complications (type and grade) observed in the second conservative treatment cohort (283 complications observed for 377 patients)

Complications	Grade 1		Grade 2		Grade 3		Grade 4		Total	
	n	%	n	%	n	%	n	%	n	%
Cutaneous fibrosis	47	34.8	21	17.4	2	8.0	0	0.0	70	24.7
Sub-cutaneous fibrosis	38	28.1	67	55.4	13	52.0	1	50.0	119	42.1
Telangiectasia	15	11.2	9	7.4	1	4.0	0	0.0	25	8.8
Hyperpigmentation	21	15.6	7	5.8	1	4.0	0	0.0	29	10.2
Ulceration	1	0.7	0	0.0	3	12.0	1	50.0	5	1.8
Deformation	13	9.6	17	14.0	5	20.0	0	0.0	35	12.4
Total	135	47.7	121	42.8	25	8.8	2	0.7	283	100

Reirradiation

- Breast ReRT with brachytherapy (PBI)

Contents lists available at SciVerse ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

Original article

**Accelerated partial breast irradiation with interstitial brachytherapy as second conservative treatment for ipsilateral breast tumour recurrence:
Multicentric study of the GEC-ESTRO Breast Cancer Working Group**

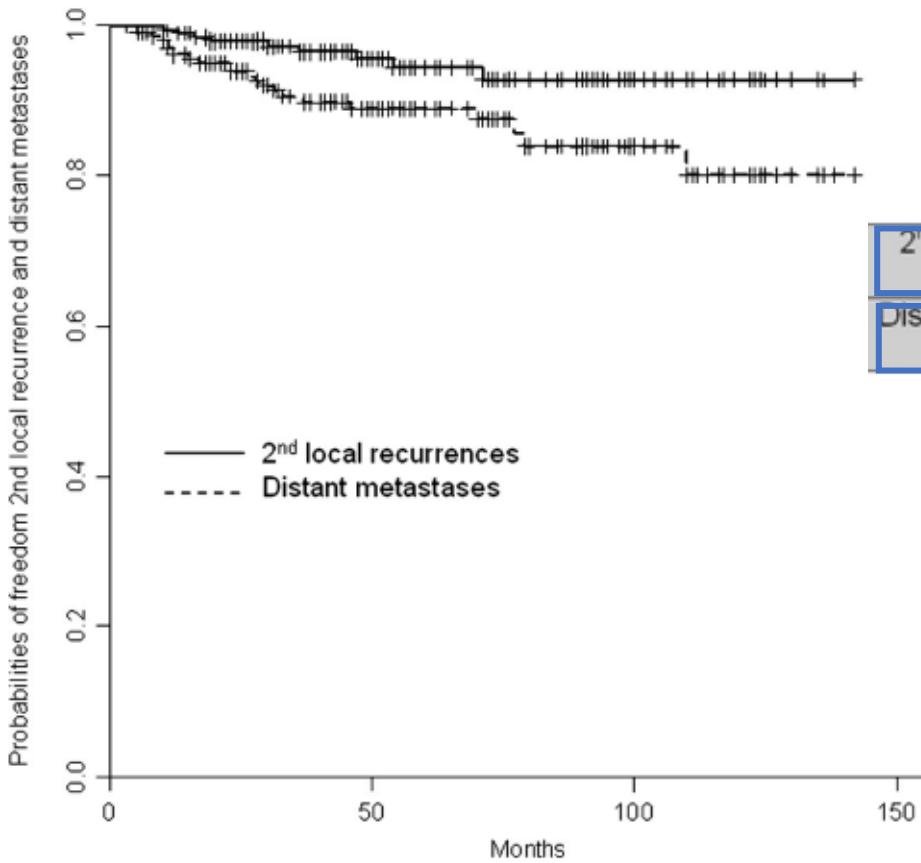
Jean-Michel Hannoun-Levi ^{a,*}, Alexandra Resch ^b, Jocelyn Gal ^c, Daniela Kauer-Dorner ^b, Vratislav Strnad ^d,
Peter Niehoff ^e, Kristina Loessl ^f, Gyoergy Kovács ^g, Erick Van Limbergen ^h, Csaba Polgár ⁱ,
On behalf of the GEC-ESTRO Breast Cancer Working Group

^a Department of Radiation Oncology, Antoine Lacassagne Cancer Center, University of Nice-Sophia, France; ^b Department of Radiotherapy and Radiobiology, University of Vienna, Austria; ^c Biostatistic Unit, Antoine Lacassagne Cancer Center, Nice, France; ^d Department of Radiation Oncology, University Hospital Erlangen; ^e Department of Radiotherapy, City Hospital Cologne, Germany; ^f Department of Radiation Oncology, Bernes, Switzerland; ^g Interdisciplinary Brachytherapy Unit, University of Luebeck, Germany; ^h Department of Radiation Oncology, University Hospital Gasthuisberg, Leuven, Belgium; ⁱ Center of Radiotherapy, National Institute of Oncology, Budapest, Hungary

Reirradiation

- Breast ReRT with brachytherapy (PBI)

GEC-ESTRO study



Time to IBTR (years)	10.1 [1.1–35.3]	
Median age (years)		
Primary	50	[19 - 83]
Recurrence	61	[28 - 85]
Recurrence site		
Initial tumour bed (ITB)	111	51.2 %
close to ITB	35	16.1 %
Other quadrant	45	20.7 %
Unknown	26	12.0 %
Median RT dose (Gy)	56	[30 - 69.6]
Technique		
LDR	27	12%
PDR	88	41%
HDR	102	47%

Reirradiation

- Breast ReRT with brachytherapy (PBI)

GEC-ESTRO study

Median follow-up (years) from the recurrence: 3.9 (1.1 – 10.3)

	Time	0	12	24	36	48	60	120	
2 nd LR	# pts @ risk	217	200	165	129	97	69	11	9 pts (4.1%)
	# events	0	1	3	2	1	1	1	
Dist. met.	# pts @ risk	217	195	159	122	93	70	12	22 pts (10.1%)
	# events	0	8	4	5	2	0	4	

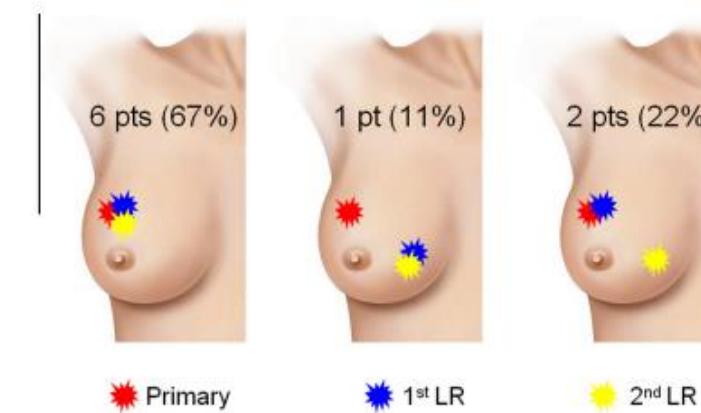
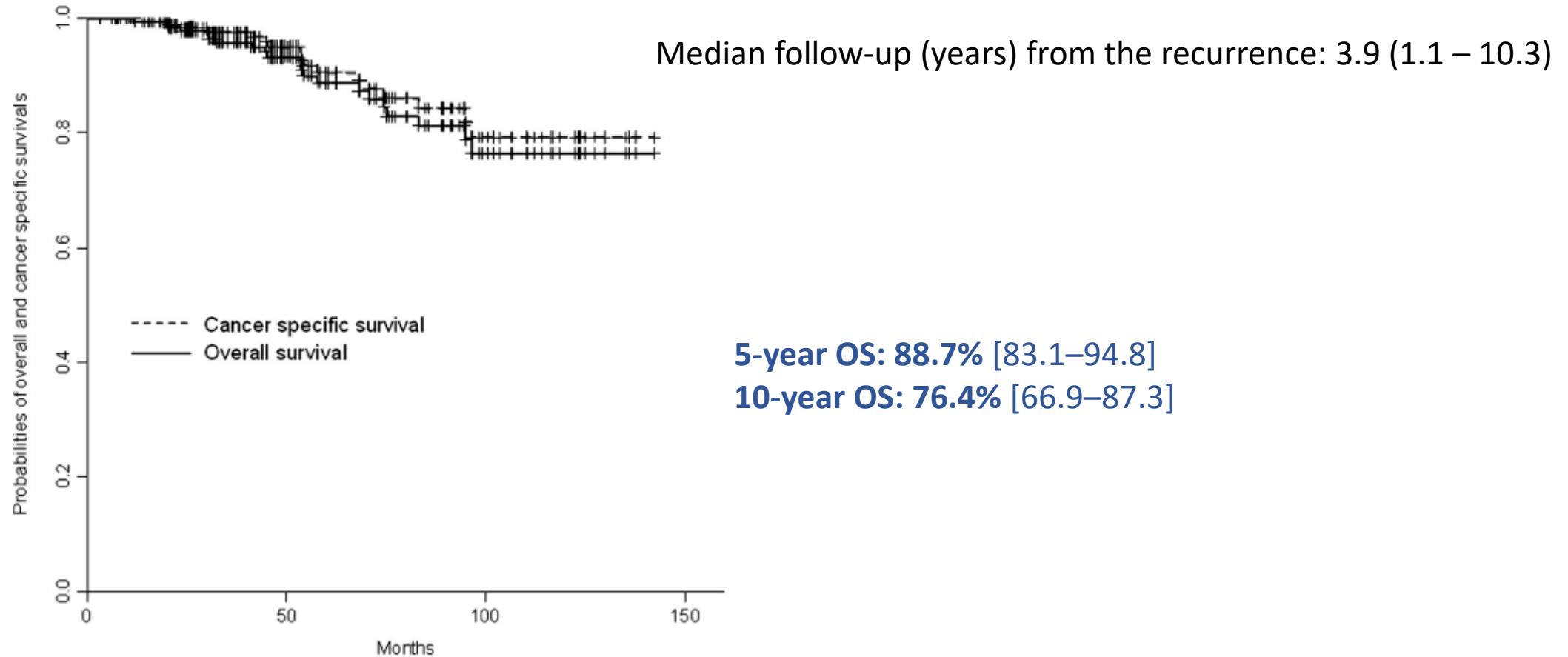



Fig. 2. Sites of 2nd local recurrence with primary tumour in red, 1st local recurrence (i.e. IBTR) in blue and 2nd local recurrence in yellow.

Reirradiation

- Breast ReRT with brachytherapy (PBI)

GEC-ESTRO study

Reirradiation

- Breast ReRT with brachytherapy (PBI)

GEC-ESTRO study

Late side effects: 141 patients with 193 events

- Cutaneous and sub-cutaneous fibrosis (67%)
- Telangiectasia (16%)
- Hyperpigmentation (9%)
- Ulceration (1%)

Late side effects: Grade

- G1 50% **89%**
- G2 39%
- G3 10 %
- G4 1%

Cosmetic assessment

- Excellent 48% **85%**
- Good 37%
- Fair 14 %
- Poor 2%

Reirradiation

- Breast ReRT with IORT (PBI)

Table 2
 Partial breast re-irradiation with IORT.

Authors	Year of publication	# pts	MFU (months)	Irradiation technique	Median Dose (Gy)	3 rd IBTE-FS (%)	5-y OS (%)	≥ G3 tox. (%)
Kraus-Tiefenbacher U et al. [26]	2007	17	26	50 kV X-rays	20	100	—	—
Chin C et al. [27]	2017	12	14	50 kV X-rays	20	100	—	0
Blandino G et al. [27]	2017	30	47	Electron beam	18	92.3	91.2	21
Thangarajah F et al. [24]	2018	41	58	50 kV X-rays	20	89.7	82	0

pts: number of patients; MFU: median follow-up; 3rdIBTE-FS: third ipsilateral breast tumor event free survival rate; OS: overall survival; ≥ G3 tox.: grade 3 and higher toxicity rate.

Reirradiation

- Breast ReRT with EBRT (PBI)

Table 3

Partial breast re-irradiation with external beam radiotherapy.

Authors	Year of publication	# pts	MFU (months)	Irradiation techniques	Dose (Gy)		3 rd IBTE rate (%)	5-y OS (%)	≥ G3 tox. (%)
					Total (Gy)	Dose/f			
Mullen E et al. [28]	1997	17	75	Cobalt + Electron	50	2	—	—	—
Deutsch M et al. [29]	2002	39	51.5	Electron	50	2	—	—	—
Janssen S et al. [30]	2018	83	35	3D CRT	45	1.8	14.5 ^a	76	0
Thorpe CS et al. [32]	2019	50	12.7	Proton	45–76	—	—	97	16
Arthur DW et al. [33]	2019	58	66	3D CRT	45	1.5 BID	5.2	95	7

pts: number of patients; MFU: median follow-up; Dose/f: dose per fraction; 3rdIBTE: third ipsilateral breast tumor event rate; OS: overall survival; ≥ G3 tox.: grade 3 and higher toxicity rate; 3DCRT: 3D conformal radiation therapy.

^a At 21 months.

Reirradiation

- Breast ReRT with EBRT (PBI)

Research

JAMA Oncology | Original Investigation

Effectiveness of Breast-Conserving Surgery and 3-Dimensional Conformal Partial Breast Reirradiation for Recurrence of Breast Cancer in the Ipsilateral Breast The NRG Oncology/RTOG 1014 Phase 2 Clinical Trial

Douglas W. Arthur, MD; Kathryn A. Winter, MS; Henry M. Kuerer, MD, PhD; Bruce Haffty, MD; Laurie Cuttino, MD; Dorin A. Todor, PhD; Pramila Rani Anne, MD; Penny Anderson, MD; Wendy A. Woodward, MD; Beryl McCormick, MD; Sally Cheston, MD; Walter M. Sahijdak, MD; Daniel Canaday, MD; Doris R. Brown, MD, PhD; Adam Currey, MD; Christine M. Fisher, MD, MPH; Reshma Jaggi, MD, DPhil; Jennifer Moughan, MS; Julia R. White, MD

Reirradiation

- Breast ReRT with EBRT (PBI)

RTOG 1014

58 patients
In-breast recurrence
Tumor ≤ 3 cm
1 year or more after initial
Unicentric (by MRI)
No skin involvement

June 4, 2010 to June 18, 2013

Histologic subtype	
DCIS	23 (40)
Invasive histologic subtypes	35 (60)

Salvage lumpectomy
 1.5 Gy twice daily during 15 days (45 Gy)
 Each fraction separated by a minimum of 6 h
 3-D conformal technique

Median time from previous RT 13.4 years
(range, 1.6 – 27.7 years)

Table 3. The 3- and 5-Year Efficacy Results (Median Follow-up of 5.5 Years)

End Points	No. of Events	3 y		5 y	
		Estimate, % (95% CI)	No. at Risk	Estimate, % (95% CI)	No. at Risk
IBR ^a	4	3.4 (0.6-10.7)	52	5.2 (1.4-13.2)	46
MF ^b	7	5.2 (1.3-13.1)	51	10.5 (4.2-20.1)	43
DMFS	3	94.8 (84.8-98.3)	53	94.8 (84.8-98.3)	48
OS	3	94.8 (84.8-98.3)	53	94.8 (84.8-98.3)	48

IBR, in-breast recurrence; MF, mastectomy failure; DMFS, distant metastasis-free survival; OS, overall survival

Reirradiation

- Breast ReRT with EBRT (PBI)

RTOG 1014

Table 2. Characteristics of the Patients With an In-Breast Recurrence

Location	Histologic Subtype	Grade	Stage	Tumor Size, cm	ER Positive	PR Positive	ERBB2 Positive	Dissection/Biopsy	Time From Registration to Failure, y
Outside treatment field	DCIS	Intermediate	0	1.3	No	No	ND	No SLNB/no ALND ^a	2.6
Within treatment field	DCIS	Intermediate	0	1.5	Yes	Yes	No	No SLNB/no ALND ^a	2.9
Within treatment field	DCIS	High	0	1.0	Yes	Yes	No	SLN not identified/no ALND	4.1
Outside treatment field	DCIS	Intermediate	0	0.2	Yes	Yes	No	No SLNB/yes ALND	5.1

Abbreviations: ALND, axillary lymph node dissection; DCIS, ductal carcinoma in situ; ER, estrogen receptor; ND, not done; PR, progesterone receptor; SLNB, sentinel lymph node biopsy.

^a Not applicable or not performed counted as no ALND.

Reirradiation

- Breast ReRT with EBRT (PBI)

RTOG 1014

Table 4. Distribution of Patients by Highest-Grade Adverse Event by Specific Adverse Event Term
Occurring More Than 1 Year From Completion of Partial Breast Reirradiation^a

System Organ Class or Term	Adverse Event Grade, No.				
	1	2	3	4	5
Infections and infestations					
Total	0	1	1	0	0
Breast infection	0	0	1	0	0
Musculoskeletal and connective tissue disorders					
Total	17	5	1	0	0
Fibrosis deep connective tissue	9	3	1	0	0
Reproductive system and breast disorders					
Total	9	6	3	0	0
Breast atrophy	4	5	1	0	0
Breast pain	9	1	1	0	0
Other ^b	2	0	1	0	0
Skin and subcutaneous tissue disorders					
Total	12	9	1	0	0
Skin induration	4	4	1	0	0
Overall highest grade, No. (%)	14 (24.6)	15 (26.3)	4 (7.0)	0	0

Reirradiation

- Breast ReRT with PBI

ELSEVIER

Available online at www.sciencedirect.com

Reports of Practical Oncology and Radiotherapy

journal homepage: <http://www.elsevier.com/locate/rpor>

Technical note

Apples and oranges: comparing partial breast irradiation techniques

Orit Kaidar-Person ^{a,✉,1}, Icro Meattini ^{b,c,1}, Douglas Zippel ^d, Philip Poortmans ^{e,f,1}

What is the best PBI technique for ReRT?

Reirradiation

• Breast ReRT with PBI

Different doses

Main partial breast irradiation techniques					
	EBRT	Interstitial Brachytherapy PDR, HDR, LDR	Endocavitary balloon ^a	IORT	IOeRT
Type of treatment	Non-invasive	Invasive	Invasive	Invasive	Invasive
Time of RT	Postoperative	Intraoperative/ postoperative	Postoperative	Intraoperative/ postoperative	Intraoperative
Specialized device/specialized centre	No	yes	yes	yes	yes
Type of RT	High-energy photons	Nuclide, mostly ¹⁹² Ir	Nuclide, mostly ¹⁹² Ir	50-kV photons	High-energy electrons
Coverage of clinical target volume	Best	Good	Fair to poor	Poor	Good
RT volume prescription	~ Tumour bed+20 mm to CTV; +5 mm to PTV	~ Tumour bed+20 mm	Dose prescribed 10 mm from applicator surface	Dose prescribed 1 mm from applicator surface	Tumour bed+20 mm determined at time of surgery
Number of treatment days	Different protocols: 5-15	Different protocols: 1-10	5	one	one
Dose homogeneity	Best	Fair	Poor	Poor	Good
Sparing of normal tissue excluding skin	Least	Good	Good	Good	Good
Skin dose	Low	Low	Variable	Variable	Lowest
Technical feasibility for various size/shape/location	Best	Good	Poor	Poor	Good
Draw backs	Dose to normal tissues; Variability in determining tumour bed especially after oncoplastic surgery	Specialized centres; dependent on tumour location within breast; invasive	Low dose at >10 mm from applicator surface; Specialized centres; dependent on tumour location within breast; invasive	Very low dose at >5 mm from applicator surface; Time added to surgery; No final histology available; Specialized centres; dependent on tumour location within breast; invasive	Time added to surgery; No final histology available; Specialized centres; dependent on tumour location within breast; invasive

IORT – intraoperative radiation using 50 kV X-ray device.

EBRT – external beam radiation therapy; PDR- pulse dose rate; HDR-high dose rate; LDR-low dose rate; IOeRT- intraoperative electron radiation therapy.

^a Example: MammoSite (Hologic, Marlborough, MA).

Reirradiation

- Breast ReRT – Normal tissue dose constraints

Two prospective phase II trials – EBRT

Table 1

Normal tissue dose constraints used in RTOG 1014* for partial breast re-irradiation

Normal tissue	Constraint for the re-irradiation
Uninvolved ipsilateral breast	<60% of whole breast receive \geq of prescribed dose <35% of whole breast receive prescribed dose <3% receive prescribed dose
Contralateral breast	<15% receive 30% of the prescribed dose
Ipsilateral lung	<15% receive 5% of the prescribed dose
Contralateral lung	<5% receive 5% of the prescribed dose
Heart	<5% receive 5% of the prescribed dose
Right side RT	<5% receive 5% of the prescribed dose
Left side RT	<5% receive 5% of the prescribed dose
Thyroid	Maximum point dose of 3% of the prescribed dose

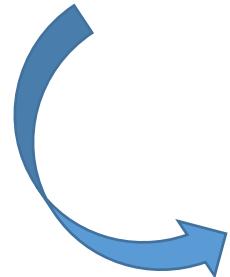
Table 2

Current normal tissue dose constraints adapted from NL31630.018.10* for chest wall/breast re-irradiation

Normal tissue	Constraint
Spinal cord	D _{max} < 50 Gy in EQD2
Whole heart	Minimise mean
Mean lung dose (both lungs)	<16 Gy
V ₂₀ lung dose	<35%
V ₁₀ lung dose	<50%

Re-irradiation in breast cancer

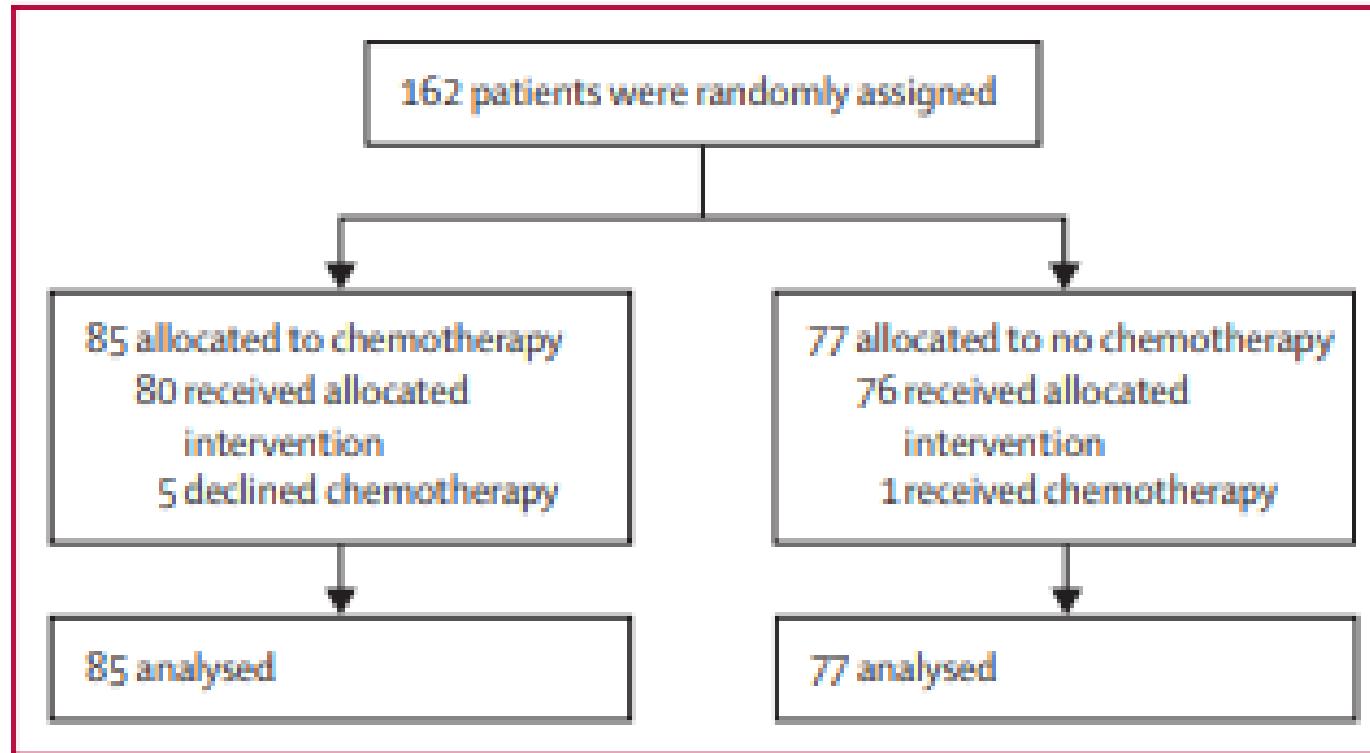
1 – Introduction


2 – Second breast conserving treatment

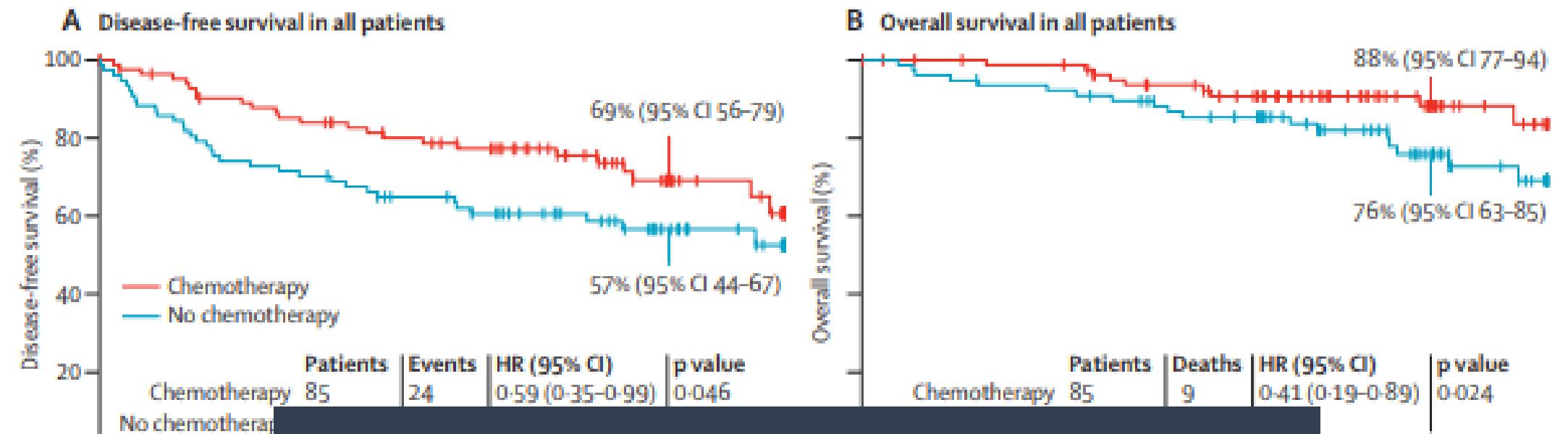
3 – Chest wall recurrence

4 – Conclusions

Chest wall recurrence and ReRT


- Treatment for chest wall recurrences after primary mastectomy is surgical resection
 - Local failure rates of up to 70% after surgery alone

Systemic therapy after local treatment can improve outcomes!


Chest wall recurrence and ReRT

Chemotherapy for isolated locoregional recurrence of breast cancer (CALOR): a randomised trial

Chest wall recurrence and ReRT

Chemotherapy for isolated locoregional recurrence of breast cancer (CALOR): a randomised trial

- 15% had serious adverse events – Chemo arm
- Only 19% of the patients were treated with ReRT

Chest wall recurrence and ReRT

Reirradiation (Re-RT) of resected or unresected breast/chest wall recurrence.

Study	Re-RT modality	Number of patients	Median follow-up (months)	First RT (Gy)	Second RT (Gy)	Cumulative dose (Gy)	Interval between RT courses (months)	Local control	Complete response	Overall survival	Toxicity
Harms et al. 2001 [29]	BT	30 (macro)	18	52	2 × 20 Gy	76–92	23	71%	93%	17%	Acute G3 16%
		28 (micro)		56	PDR	85–110	44		75% (3-year)	48% (5 years)	Late G3 60%
Niehoff et al. 2006 [30]	BT	17 (R1)	19	59	28 Gy HDR (15 pts)	70–103	80	59%	–	75% (1 year)	G4 7%
		15 (R0)		57	30 Gy PDR (17 pts)		87				G3 skin ulceration (1 pt)
Merino et al. 2015 [31]	EBRT	47 (6 macro)	17.4	50	50 (25 × 2Gy)	100	41	62% (1-year)	–	67% (2 years)	G3 fibrosis (4 pts) Telangiectasis (3 pts).
								50% (2-year)			

RT, radiotherapy; EBRT, external-beam radiation therapy; BT, brachytherapy; HDR, high dose rate; PDR, pulse dose rate; G, grade; pts, patients; macro, macroscopic disease present; micro, treated for microscopic disease only; R1, resected with residual disease; R0, resected with clear margins.

Chest wall recurrence and ReRT

Clinical practice

- No standard approach
- To be individualised
 - Prognosis
 - Time interval
 - Side effects of primary RT

- ReRT to chest wall can be considered:
 - For macroscopic disease, if surgery is not feasible
 - For microscopic disease after resection
 - For microscopic disease after systemic therapy

Chest wall recurrence and ReRT

Clinical practice

Setting 1

- Complete resection, no risk factors
 - Follow-up

Setting 2

- Complete resection, with risk factors
 - No other or controlled disease elsewhere
 - Favourable tumour biology
 - Long life expectancy
 - No / limited side effects for earlier RT

Chest wall recurrence and ReRT

Clinical practice

Setting 3

- **Micoscopically incomplete resection**

- Strongly consider ReRT if
 - No other or controlled disease elsewhere
 - Unfavourable tumour biology
 - Long life expectancy
 - No / limited side effects for earlier RT

Setting 4

- **Macroscopically incomplete resection**

- Strongly consider ReRT if
 - No other or controlled disease elsewhere
 - Unfavourable tumour biology
 - (Expected) symptomatic disease

Re-irradiation in breast cancer

1 – Introduction

2 – Second breast conserving treatment

3 – Chest wall recurrence

4 – Conclusions

Conclusions

- Locoregional recurrence rates after RT for breast cancer went down a lot (but breast cancer survivors will increase)
- Assess carefully physical + physiological +(radio)biological parameters of past RT
- ReRT is often considered as a treatment for locoregional recurrence
- Hyperthermia
- Second BCT
- ... for well-selected patients

Unicentric, without skin involvement

Isolated recurrence (no concurrent regional and distant relapse)

Tumour size ≤ 3 cm

Preferably: time to IBTR ≥ 3 years

Conclusions

- Multi-disciplinary tumour board -> individualize therapeutic approach
- Systemic therapy added to adequate locoregional treatment -> can improve survival
- Further prospective studies are required to evaluate 2nd BCS ± ReRT vs. mastectomy and ReRT for chest wall recurrence
- including the RT-technique and treatment dose!

No randomized phase III trials to support second BCT

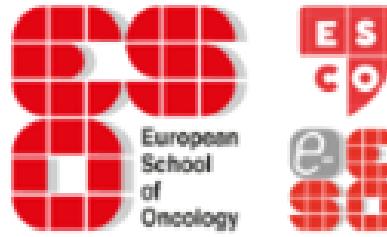
and ReRT after salvage mastectomy!!

Thank for your attention

Thanks to my colleagues

Gustavo Nader Marta

Philip Poortmans


Icro Meattini

Orit Kaidar-Person

Pierfrancesco Franco

SÍRIO-LIBANÊS

European School of Oncology
eso.net | e-eso.net | esco.org

Re-irradiation in breast cancer

Gustavo Nader Marta

Department of Radiation Oncology, Hospital Sírio-Libanês, São Paulo, Brazil