Subtitles and transcriptions

Subtitles and transcriptions are available for selected materials for purpose of helping users
understand the contents of the educational sessions.

Uncertain words have been indicated with ?? before and after the part.
Parts that could not be understood at all have been indicated as [Audio Not Clear].

Every effort has been made to faithfully reproduce the audio of the sessions as recorded. However,
no responsibility is accepted for mistakes or omissions. ESO does not endorse any opinions
expressed in the presentations.

Artificial intelligence for prostate cancer radiotherapy

Prof Bibault: Hi everyone. Thank you for inviting me to discuss today about Al for prostate cancer
radiotherapy. I'm Jean Emmanuel Bibault, and I'm a physician scientist, I'm working in Paris, and I'm also
doing research in Al. So, what | want to talk to you about today, is actually quite old scientific field, which we
call Al or artificial intelligence. The first concepts of Al and precisely neural networks, dates back to the end
of the 40s. And you should know that it's actually a field, that has known some kind of golden ages, and also,
dark ages that we also called Al winters, which were periods during which the scientific community was not
really interested into Al. Because we used to think that Al was never going to be possible. We've seen, more
recently, a new interest in Al and most importantly, in machine learning, and deep learning. Mostly because
of the works of three people, one from Toronto, which is Geoffrey Hinton that you see here on your screen,
on the lower right-side. And also, from Yoshua Bengio who's also Canadian from Montreal. And finally, from
Yann LeCun who's a researcher from France, who is now the Director of Al at Facebook. So, these three
persons were actually called the godfathers of deep learning, and they have really launched and renewed
the interest in Al that we've seen from the beginning of the 21st century. Just to remind you that when we
first started to do Al back in the 50s, we used to create networks of neurons who are very real. So, you have
here on the right-side of your screen, an example of one of the first machines, which was called Perceptron,
and this is one from 1951 or -2. But today, of course, all these wires, all these electrical wires have been
virtualized. And now, you should know that Al is mostly done with frameworks, which are software
frameworks, available from Google, such as Tensor Flow, or Facebook, such like Pytorch, or from computer
sciences school, such as Scikit-learn, which is developed and released by a French well known school which
is called INRIA. So, the goal today is to try to show you that Al is not some kind of fantasy that you read about
in the journals. It's gonna be very, very real, and it's going to completely change the way that we do medicine,
of course, and of course, within medicine, oncology. And this is just a few of the recent titles that you could
have read mostly in the American journals, but I'm sure that in each of our countries, you've seen this kind
of very catchy titles, and actually, they are not too far away from the truth. At least the truth that's going to
emerge in the coming years. What | want to show you today is a few examples of works that we performed
in the Al lab of the Stanford University, in the US. And that we have continued in our INSERM lab here in
Paris. And these works are mostly about screening cancer, and in our case, prostate cancer. Diagnosis cancer
and also planning treatments, evaluating, and assessing treatment response. And finally, you should know
that Al can also be used for follow-up mostly through telemedicine. And you should know, for example, that
just today, the ESMO has released the guidelines for telemedicine of patients treated for cancer. So, it's a
very, very relevant subject. So, just a reminder, you can ask your questions in the Q&A button, and we will
keep them at the end, and Pier Francesco and | will try to answer them as best as we can. So, the first part of
our topic today is about prediction, diagnosis, and epidemiology. | want to talk to you about work that was
performed in the US, | guess you know that each year in the US something around 200.000 new cases of



prostate cancer are diagnosed. And usually, what we do for that, I'm sure you know that, but we do PSA
testing, prostate biopsy and then, we do staging in order to try to stratify the risk of these patients. Currently,
our risk stratification strategies are quite primitive, | would say, because they depend on very simple variables
such as PSA, the tumour stage, the lymph nodes, metastasis, or the tissue and organs of metastasis. And
sometimes, in the best-case scenarios, or in the best centres, you can also use genomic signatures such as
Decipher for example, when you decide to treat a patient with radiation therapy. All these data is used to
classify patients within only four, | mean, global stratification, localised, locally-advanced, metastatic and
finally, castration-resistant. So, you see that it's pretty basic, and we need to be able to go further than that
to try to stratify the patients in order to better adapt treatments. Why is it important to adapt treatment and
treatment strategies? I'm sure you've all read this great paper, in The New England Journal of Medicine, that
was published a few years ago about the ProtecT trial, which was randomised control trial. And you see here,
the results on the prostate cancer specific survival, where the authors compared three different strategies.
The first one being surgery, second one radiotherapy, and the third and last one active monitoring. And you
can see that whether you do surgery or radiation therapy, or even active monitoring, which is basically
nothing, or almost nothing, prostate cancer specific survival is the same even when you have like a 10-year
median survival, | mean, median follow-up. And it's really important to keep in mind that in that trial there
were some very high-risk patients, including some T3 and T4 patients who were in the active monitoring
arms. So, it shows that with our current strategies, we are not really able to discriminate the patients who
are going to benefit from the treatment, from the patients who are not going to benefit from the treatment.
Why is it very important specifically in prostate cancer to be able to know which patients are going to benefit
from the treatments? Well, it's pretty basic, that's because our treatments, whichever they are, are actually
extremely toxic on a urinary point of view, also on a sexual point of view, and of course, on a digestive point
of view. And each of these treatments, | mean, surgery or radiation, have a very specific and different profile
of toxicity. So, what we do currently, is that we almost treat everyone in the same way and we induce a lot
of toxicity, including to patients who will never have any kind of benefit from these treatments. So, we need
to be better at decision making in prostate cancer. Just an illustration of that is that among the 200.000
patients in the US, new patients every year, only around 26.000 will actually die from the disease. And it is
estimated in different studies that up to 35.000 patients are actually being over-diagnosed and will go
through unnecessary treatments that will cause complication, that will cause toxicity and these patients will
not benefit from treatments. So, how can we use what we have, existing data to better stratify patients and
to determine which patient will benefit from treatment and which patient will actually never benefit from
that? Of course, we already have the answer to that. The answer you will say is nomograms. Nomograms,
they already exist, there are lots of nomograms available and they usually predict progression-free survival
or cancer-specific survival. Most of the time, most of the published nomograms, not everyone but most, rely
on data from only one centre. So, they're not always well generalizable and most of those also use a
regression model, which is in itself not really an issue, but | think that today we have better tools to better
discriminate patients. That fact is not really the main limitation of nomograms, the main limitation of
nomograms is that they do not take into account the comorbidities of the patients. So, whether you have like
a very high-risk of cardiac death or cerebral stroke, that does not appear within the nomogrames, right? So, if
a patient is at a high-risk to die from a heart disease, but a low-risk to die from prostate cancer, this will not
show in the nomogrames. So, this is basically like you are trying to look inside a room through a very tiny key-
hole, and we need to open the door to have a whole picture of the patients, and not only the prostate cancer
variables. And this is an example of one of the most used nomograms, which is from the MSKCC New York,
and if you go online and use that nomogram, they also warn you from these very facts that this nomogram
does not exclude the possibility of death from other causes, such as heart disease or accident within the
time-period that they were developed for. So, the main goal of the work that | want to present to you today
was to address that challenge. To do that, thankfully, we have already a very important amount of data. And
the data that we used was data that we extracted from the PLCO trial, that is a very well known, randomised
multi-centre trial that was performed in the US, where approximately 80.000 men were randomised in 10 US



centres between annual screening for any kind of cancer within prostate, lung, ovarian and colorectal. And
also, the control arm had usual care, so no screening. And you should know that within that trial, we have a
very, very large amount of data, not only on screening, but on the whole outcome of the treatments of these
patients on this very large number of patients. So, we had to draw data transfer agreement with the NCI, and
we were able to access that data, which is a very granular and very high-quality data, because it's been
gathered in a prospective manner, which is of course extremely important when you want to develop Al,
because if you want to develop Al, you need very high-quality data, otherwise your model will be garbage
basically. So, the dataset that was available from the PLCO trial is a very comprehensive dataset that contains
nearly all the PLCO study data available for prostate cancer screening, incidence and mortality analysis. One
record for each of the participants in the PLCO trial has baseline features, screening features, diagnosis
features and all the treatment procedures. So, what we did and what we decided to focus on is, of course,
patients that were actually diagnosed with prostate cancer during the follow-up of PLCO trial, irrespective of
the arms that they were originally included into. So, the patient could be screened, and the patient could
also be screened. There's been a bit of controversy about the PLCO trial, because we know that many patients
from the control group who are not supposed to get any kind of screening actually got screening through
digital examination or PSA. So, that's why we took patients from both arms to try to limit the biases from this
kind of contamination. The next step that we performed was to assess and select the productive power of a
very simple set of questions as a baseline indicator for prostate cancer specific and overall survival, 10 years
after diagnosis. So, you can see here the whole list of the features that we extracted from the PLCO trial, they
were from the prostate cancer diagnosis, very basic and [Audio Not Clear] features, but we also had the
whole medical history of the patient, his physical activity, as you know, and there's been quite a few studies
about that, physical activity is a very important predictor of toxicity, of course, but also of survival. Social
economic status, which is of course also a very high predictor. And finally, hormonal status, which we also
have within the PLCO trial. So, once again, if you have any questions, feel free to ask them using the Q&A
button, and we'll keep that in mind for the end of the topic. Once we had selected these features, we trained
a model, and to do that, of course, this is a little bit on the technical side of the subject. But we split the data
within training and testing dataset because we need, of course, to train a model on data and then, test it on
data that he's never seen, otherwise it would be contamination also and it would be a little bit like cheating,
right? We treated this task as a classification task, so basically, we wanted the model to predict whether the
patient was dead from any cause within 10 years of diagnosis of one of the models that we call the overall
survival model. And we also trained another model, where we wanted the model to assess whether the
patient was at risk to die from prostate cancer within 10 years after prostate cancer diagnosis. So, as you
understood, we had tabular data, and we know that for tabular data, which is basically a table, right? The
state of the art, the best algorithm, the best kind of Al that you can use is XGBoost, which is a gradient
boosted decision tree. And | will not specifically enter within the technical consideration for XGBoost, but
there is a huge literature about that, that you can read online. One of the advantages of using XGBoost is
that this algorithm inherently handles the missing values. So, you don't have to treat or to replace any of the
missing values to train the model. Which is a huge advantage of XGBoost, and which is one of the reasons
why it's working so well. We trained the model on the training datasets and we tuned what we called the
hyper-parameters. The hyper-parameters are a set of parameters within XGBoost that you need to tune,
which means that you need to find the most optimal one, the best one. And we did that in a nested cross
validated way, only within the training dataset. To do that and to do that in the most efficient way possible,
we used a Biogen optimization approach, which is basically a way to test the best parameters from a
probabilistic point of view, without having to test all the combination of all the parameters, which would take
weeks and weeks. Another thing that we need to do when you use XGBoost, and when you do machine
learning in general, that you need, and it's extremely important, to correct the class imbalance with positive
class waiting. What is that? It's basically the fact that within the patients who were diagnosed with prostate
cancer, there is only a small proportion of patients who will actually die. And if you have this kind of
imbalance, an algorithm will, for example, risk to over-fit on this class. And so, you need to correct this when



you do the training in order to avoid that risk. Another thing that we wanted to do is that we wanted to
provide, what we call interpretability. Why is it extremely important within medicine? It's important because
most of the time and most of the criticism that machine-learning has is that Al is basically a black box, right?
Al is extremely performant, it gives very good results, but you never know why the Al has given such or such
results. No, well it's been a few years now, but we have methods to try to extract from the model, the reasons
that the model has performed any kind of prediction. There are a lot of different methods and we chose to
use one of the most effective one, which is called the Shapley values. And it's a unified approach to interpret
tree models and XGBoost is of course a tree model. So, it it's perfect to use with XGBoost. What Shapley
values do is that they reflect, and | will show you that later, the importance of every features on a population
scale, so on the whole training dataset, but also, if you want at an individual scale. So, you can pick any
individual and see why the model did this prediction, | will show you that. So, just to show you the advantages
of Shapley values compared to other kinds of methods. After we did that, we deployed the model online, the
two models. And we are able to provide very precise prediction, from a very simple set of features, between
20 and 30 features. And the patient or the physician can go online, enter the features and then, get his own
prediction. So, what are the results of that approach? So, we used from the PLCO trial, all the patients who
were the prostate cancer survivals, which is almost 9.000, which is a pretty good number of patients. And
you can see here on that slide, the characteristics of these patients and what you should keep in mind is that
most of the patients were localised or locally advanced. And we had actually very few metastatic prostate
cancer that's basically because it was a screening trial. So, it's logical that we do not get a lot of metastatic
prostate cancer. But you should keep that in mind when you want to use that algorithm. | think that it's not
the best for metastatic patients. Otherwise, all the other features were pretty well balanced. And as you can
see, a little bit over 500 patients died from prostate cancer and a little bit over 3000 patients died from any
other cause. Here are the model's performances, and you can see that these performances are extremely
high, and it's not usual to get this kind of very high performances. Usually, in publication, you've got very
good AUC, which you see here, but very bad PRAUC, which is precision recall. And in our study, we had in
both of these metrics, very good performances. And when you do an algorithm that tries to predict survival,
it's extremely important to have both of these metrics, with a good value. So, it's another message for the
presentation and for Al in general, do not only read about AUC. AUC is not very good metrics, most of the
time. You need to consider all these other metrics in order to be able to interpret the performances of the
models. | just wanted to show you both of these confusion matrixes. To show you that both the models are
very, very good. And so, you want the models to have a very high number in that case, and in that case, in
both of these tables, and you can see here that it's the case for both models. Another interesting thing is that
we wanted to show that using this kind of model gives more interest to prostate cancer screening. I'm sure
that you know that there is a lot of controversy regarding prostate cancer screening. Should we be screening
patients for prostate cancer? Because we have data from the PLCO and from the European trial that are a
little bit contradictory. The European trial showed that screening prostate cancer is good, | mean, from an
overall survival point of view. But the PLCO trial showed that it doesn't change anything. So, what we wanted
to do is take all the patients that were screened and not screened and apply the model to these patients.
And we show that if you do this kind of two-step process, first, a conventional screening through digital
examination or PSA and then you apply the model, we are able to discriminate with a very, very high
difference between the patients who are going to be at very high-risk of prostate cancer death, and the
patients who are not. So that can be used to better personalise treatment. And we showed even for overall
survival, that these models combined with screening, can be very interesting. So, | talked to you about
interpretability, and this is actually the result of the Shapley values on the populations scales. You have here,
each of the features of the models that are taken into account into the model. And here, you have the
contribution to the prediction. If the value is the lowest, it means that the risk of death is lowest. And if the
value is highest, it means that the risk is higher. And you can see, for example, on the Gleason Score, that if
the Gleason Score is very low, the risk to die from prostate cancer and even overall survival is quite low, but
if the Gleason Score is higher, very logically, that risk increased. And with that, you are able to visualise that



your model is actually correct and compatible with the human intuition. So, you are able to actually check
that the Al that you develop is not completely irrelevant and is not doing absolutely anything. And we show
that on both of these models. And so, you can now go online and use these models online and get a very
precise prediction on an individual scale that I'm going to show you now. So, just to check the consistency
with our physician intuition, | wanted to show you one or two virtual patients. Let's talk about a patient who
has a high-risk prostate cancer, but who has no significant comorbidities he's young, he doesn't smoke,
doesn't drink alcohol, has a regular physical activity. And this is the exact results that you get online, you get
the probability to die from prostate cancer, and you get also this little figure here that shows you in red the
features that participate to increasing the risk to die. And in blue, the features that participate in decreasing
that risk. In that case, in that patient, you can see that his risk to die from any cause including prostate cancer
is around 20%. And his risk to die from prostate cancer specifically is also around 20%. That is easy to explain
because basically this patient has no risk to die from any other thing than his high-risk prostate cancer. But if
you take another kind of patient, with an intermediate-risk prostate cancer, and several comorbidities. He's
older, he smokes, he drinks, he has no physical activity. And then, you will see that this kind of patient has a
probability of dying from any cause of up to 25%. And you can see that's because he's a smoker, and he has
no physical activity. But his probability to die from prostate cancer is actually extremely low. So, you need to
understand that when you talk about risk of death, you actually talk about a competition between general
cause of death and prostate cancer. What | mean is that if you are going to die from lung cancer, you will not
die from prostate cancer, right? So, that's why it's extremely important to take into account the comorbidities
of the patient. So, of course, these models are not perfect, but they were designed to answer, as | showed
you, | think, a relevant clinical issue. Which is which patient will actually benefit from treatment and if so,
which patient is going to die from prostate cancer. And if so, why? The why is extremely important. The
results are pretty accurate and so, it's the first model that was developed using machine learning. And that
was trained on such a large number of patients, from 10 different centres and from prospective data, which
is extremely important. So, | think it's much generalizable, and by that, | mean it can be used on patients from
other countries and other centres. Of course, the limits that | already mentioned, that's the trial, | mean the
data that we used for the trial was not designed specifically for that. So, it can introduce possible biases. And
most importantly, for patients with metastatic prostate cancer, there were only 2% of patients within the
dataset. So, you should be very cautious when you use models for this kind of patients. Finally, of course
there is a questionnaire response biases, because all the data within PLCO was based on questionnaire, right?
And so, it could also introduce biases, but it's the same in any kind of study. So, the model has been deployed
online. It's been presented at ASTRO in 2019, and at the ESMO in 2021 and it's being used worldwide. And if
you want to use it, you have the URL right here on your screen. So, again, if you have any kind of questions,
feel free to ask them. So, that was the first part, and the largest part about epidemiology, diagnosis, and
prediction. One other work that | want to show you that is more related specifically to radiation oncology is
treatment planning. And basically, you know that we can use Al, and most specifically, most frequently deep
learning to do all these different steps which are segmentation of the tumour and the organs at risk,
automatic dosimetry and, of course, ultimately, IGRT and adaptive radiotherapy. One of the works that we
also performed in Stanford, is using deep learning and more specifically, sorry, U-Net network to
automatically propagate the prostate segmentation from the treatment planning CT scan to the daily CBCT.
So, as you know, when there is a patient who's treated with radiation therapy for prostate cancer, he usually
goes through between 20 and 40 treatment sessions. And each day, or at least once a week, he's got CBCT,
which is a volumetric imaging to try to check for his positioning and for his bladder rotation, for example. So,
what we wanted to do is use the segmentation that we did manually on the treatment planning CT scan and
try to use that to guide deep learning to automatically segment CBCT. And so, do that every day to better
adapt the radiotherapy treatment. So, in order to do that, again, we used two groups, and for the time-sake,
I will not go too much into details, but we used a group for training, a group for validation, and for testing.
The cases were segmented by four different experts of prostate cancer. And then, we compared the
performances of the unit compared to the performances of the humans. And we show with these metrics



that the unit is able to segment the CBCT with a very high-quality, compared to the observer. Of course, we
could discuss, and | would agree, that the DICE score is not necessarily the best score, always the best score
to assess the performances of an auto-segmentation algorithm, but still, it's a very interesting result. You can
see here the example of three groups of units, and the difference between the human control, and the unit,
the automatic propagated controls. Again, with the four examples of four observers and the consensus, the
consensus is actually a way to average the controls of the four observers within only one. And so, | wanted
to show you that because this method is actually very fast, very reliable and we could use that, it's still in the
research stage, but ultimately, we could imagine that we could use that for daily IGRTR and daily
segmentation, automatic segmentation of CBCT for prostate cancer radiotherapy. Okay so, what are the
prospective in Al for prostate cancer? So, now I'm going to be a little bit more on the science fiction side. |
guess that I've shown you a few examples, but there are many, many more of Al in diagnosis and radiation
therapy treatment planning. But you should know that someday it's not completely unimaginable that Al will
perform surgery. There are already works in Stanford, for example, to train a deep learning model to identify
the surgical tools of a surgeon automatically on a video in real-time. So, if are already able to do that, we can
imagine that in a few years, maybe 5 or maybe 10 years, the deep learning models will be able to see not
only the surgical tools, but also the operating site. So, this is one of the examples that you can read in Nature
Reviews Urology that discuss that example. But most importantly, beyond all that, we should not forget the
limits of these methods. Al is not like a magical wand; you can read and you can create a very bad Al. And of
course, you can also create very good algorithm. So, | think that we need to train the physician, from today
and from the future, to be able to interpret the results of the published study and the results of the Al systems
that are going to be available for us to use. We need validation, just like we need validation for drugs. | think
that we need to perform dedicated trials with specific methods to be able to assess the actual performances
in the real-world of any kind of Al system. Of course, it's extremely complicated to define which are the
quality criteria of this kind of algorithm. And we are currently writing in collaboration with the AAPM, so the
American Association of Medical Physics, the ESTRO-ACROP guidelines for developing Al within radiation
oncology. So, | want to thank the team that welcomed me in Stanford and my team now in France. And of
course, my department of Radiation Oncology here in Paris. And we can answer the questions now, | guess.

Prof Franco: Yes, sure, thank you very much, Jean Emmanuel for this great, great talk. And the topic is, of
course, very intriguing and there's few questions actually coming from the audience. So, | would want you,
eventually, to answer. The first one, | think, you mentioned when you were discussing about nomograms,
that nomograms are mostly relying on regression model. And so, one of the attendees is asking what is
actually a regression model, or maybe, | mean, how can you compare it, say, the methodology that you use
when you regress on a linear regression or on a logistic regression, and what is the difference between the
statistical approaches that you use with Al, for example?

Prof Bibault: So, regression models are basically some of the more simple models that you, most of the time
in the studies that you can read online or in any kind of journal it's regression model. And they have the
advantage to be also easily interpretable because what you get when you do a regression model is almost
like an equation. And you see that each variable, each feature has upon direction, a weight that will influence
the final outcome. This is not the case in machine learning, in statistical learning. You do not get this kind of
simple, easily interpretable equation, and that's why you need to use external methods to assess the
participation, the weight of each variable to the decision. So, if you look at any kind of nomogram papers,
most of the time, not always, but most of the time, you can get the direct equation that you can use to input
each of your variables and to get a prediction.

Prof Franco: Yeah, thank you. Thank you, Jean Emmanuel. The second question is about the difference
between... if there's a difference, probably there are some of... kind of overlapping one into the other in
terms of domain, the difference between Al deep learning, machine learning. These terms are somehow
confused between each other. So, probably it'd be helpful to clarify.



Prof Bibault: Yes, absolutely. It's a very frequent question and a very relevant question because, well, to put
it simply, Al is only a very large field, that means that you are trying to develop methods to emulate
intelligence in a computer. Okay, so, | guess that everyone knew that, right? But within Al, there are already
several categories, for example, | mentioned like the Al winters, and the Al that was developed in the 60s,
70s and at the beginning of the 80s. Most of the time, this kind of Al, including Al that were developed within
healthcare, already at the time, are symbolic Al. What is symbolic Al? Symbolic Al is simply a set of manual
rules that were defined by domain experts. So, who basically, you asked the physician, "please try to create
rules that | can use to classify patients." And | will answer each one of these rules automatically, and this will
give me a prediction or this will give me a classification. So, this did not rely on any kind of data. It only relied
on the experiences and the experts, okay? There is another kind of Al which is called, which has many names,
but which is basically called statistical learning or machine learning. And this is basically a completely different
approach where instead of creating manual rules, you are going to give a large amount of data to an algorithm
and hopefully try to train that algorithm to find by itself the rules that are within that data to classify the
patient. So, you do not create any kind of rules, this is the algorithm that's going to learn by itself these rules,
and these rules can be extremely complex. And so, they are most of the time not easily interpretable. Within
statistical learning, there is lots of different methods. For example, there is XGBoost, that | mentioned, which
is a gradient boosted decision tree. A decision tree is basically a set of rules and the algorithm is going to
define each one of these rules by itself, and it's going to give you like a prediction by answering each one of
these automatically defined rules. But there are many other methods, for example, there is support vector
machine, where the algorithm is going to try to find the most representative points, data points, and then,
classify each of the other points depending on these two support vectors. And there are also KNN et cetera,
there are a lot of different methods. And then, within machine learning still, there is what you call neural
network. A neural network is another kind of machine learning, another kind of statistical learning, where
we tried to emulate the workings of a human brain, | mean, of a brain. And so, you are going to define units
which are neurons, which are connected between each other by, like that's where | showed at the beginning
in the perceptron. It used to be wires, but now it's software. And the neurons are going to define
automatically their own weights. And it's going to define their participation into the final prediction. And
then, within neural network, you've got deep neural network. And so, it only means that you have a very high
number of layers of neurons. And that's why you say that it's deep, because the deeper you go within the
layer and the bigger the network is. So, | guess, | hope I'm clear, but it's actually pretty simple. Deep learning
is a category of neural network, which is itself a category of machine learning, which itself is a category of
artificial intelligence.

Prof Franco: Yeah, they are somehow comprised within each other, right?
Prof Bibault: Yes, a little bit like Russian dolls basically.
Prof Franco: Correct.

Prof Bibault: And just to close on that, it's pretty interesting because we've been, lately, concentrated,
focused a lot on deep learning. If you like go on Facebook or your iPhone or whatever, there is a lot of deep
learning going on. And we are suspecting that we might be hitting a wall, | mean like, we are not necessarily
able to go any further within the performances of deep learning. And so, some researchers are considering
that we should be trying to mix a symbolistic approach, with a deep learning approach. And so, this is going
to be the development, | guess, in the coming years is to try to mix human expertise and machine expertise.

Prof Franco: Good, good. Thank you, Jean Emmanuel. One quick question is how is the DICE index, how is it
calculated?

Prof Bibault: Yeah, the DICE, it's a pretty basic index. | mean, it's like a similarity index. Where you compare
the control of... the automatic control that was obtained from deep learning, and the control that was



obtained from the human operator. And then, you are going to compare the union and the addition and
then, you divide each one of these and you get a DICE. And the higher the DICE is the better it is.

Prof Franco: Yes. So, it's basically intersection divided by the union.
Prof Bibault: Exactly.
Prof Franco: So, if the volumes are coincident, then it's one, and actually, it's multiplied by two.

Prof Bibault: By two, yeah. But once again, DICE is not necessarily the best index. There are many more
indexes and there are actually quite a lot of publications talking the best index that we should use but still,
most of the publications report to DICE index.

Prof Franco: Yeah, DICE index is highly volume dependent. So, it really depends, the performance really
depends on the volume of the structure that you're comparing. And there's another question that just
arrived. Does deep learning include also radiomics and genomics?

Prof Bibault: Deep learning is only a method to analyse a set of data, to create a model. Radiomics is a method
to extract quantitative information from a morphological image, and genomics is a way to extract data from
sequencing, genomic sequencing. So, deep learning can be used to analyse radiomics or genomics, but it's
not on the same level.

Prof Franco: Yeah. It's something like an instrumental method to work on the others. Great, great. | have a
couple of questions, just quickly for you. | think you made some like important statements, right? One was
about the need for high-quality data for artificial intelligent processes. And this is like kind of garbage-in,
garbage-out, kind of, let's say, approach, because | think there's some sort of misperception, right? Because
whenever, for example, we talk about real-world data and observational data. That sometimes are not good
quality data. And | think sometimes the researcher has the feeling that, okay, | have this kind of noisy data,
not very high-quality. | can just use some like sophisticated neural network, deep learning technique, and |
will be able to find like meaningful data out of this like trashy type of... meaningful results out of this trashy
type of data. But you stated that it is not the case, right?

Prof Bibault: Yeah, well, not everybody agrees on that, but | think that if you have bad data, you can do
whatever you want. It's just not going to work and it's gonna include a lot of biases. So, | guess, you should
be, of course, always careful when interpreting this kind of studies. Including the one | showed you, we need
to be very modest with the results that we get.

Prof Franco: Right, so good attention on the way you collect data and the data you're managing.
Prof Bibault: What is important is the amount and the quality of data.

Prof Franco: Right, right. And the advantage of managing data with artificial intelligence, you think is only a
computational advantage in terms of like managing a big amount of data or the quality of the prediction, the
quality of the result is also dependent on other characteristics of Al?

Prof Bibault: Absolutely, the quality of the prediction is highly reliable on the type of model that you use. As
| said, for example, XGBoost is very, very good. But if you, we know that XGBoost is better than SVM or KNN
in many situations. And we also know that for tabular data, for table, deep learning it's not like the best
methods. Deep learning is mostly for image analysis tasks probably. So, yes, you need to adapt the kind of
algorithm that you use. And again, it's not like a magical wand.

Prof Franco: Yeah, you need expertise and you to be used to work on that. So, sure. And the last question |
think, because | think we're running out of time. You nicely show how the model you use were kind of pretty
efficiently able to discriminate the type of patient who has like an excess in the risk of dying of prostate
cancer compared to others that have high-risk of dying of competing causes of death, of comorbidities. And



you showed like an example of an, let's say, high-risk prostate cancer in a patient with, let's say, good
performance status, or without other competing causes of death. And then, you showed let's say a low-risk
or intermediate- risk patient with like heavy comorbidities that might increase the likelihood for him to die
of other causes. So, this is quiet, let's say, | would say, easy scenario to discriminate with. But | was wondering
what is the performance of the model for, let's say, low-risk cancer patient in a good performance status
patient, with a long expectancy, so, where you potentially might go to surveillance, but you might end-up in
having late relapse, that you are not able to predict. And the other | think challenging and tricky clinical
scenario is having a high-risk prostate cancer in a highly comorbid patient. So, there, how the model is able
to discriminate this situation and to predict the best strategy?

Prof Bibault: Yes, absolutely, absolutely. That's a very valid point. The performances are still pretty good. And
once again, the advantage of these models is that they're going to show you the features of why the patient
is at risk to die or not. So, you can use these features, if you want to try to tailor your decision. But before
you do that, of course, you would need like a very rigorous and thorough validation of this kind of model in
a more prospective matter. And this question actually raises the question of what do you do with information
about the future? | guess everyone has seen movies such as "Minority Report". What do you do when you
think that a patient is going to die from this or that cause, but if you actually adapt your strategy to that, how
are you going to know that the algorithm was right or wrong and that your decision actually had any
participation into changing that? And this kind of question, we clearly do not have the answers to. And | think
that it's going to be a major, major issue in the use of mostly predictive Al. Which is a lot of the type of use
that we are projecting... Al is going to be used for, | mean. And | don't have the answer to that, but | think it's
really very interesting.

Prof Franco: Great, great, great. That's a nice, nice discussion, very nice elements for us think about. So, |
think, Jean Emmanuel, | think for the sake of time, we need to close the session if there's no other urgent
question from the audience, and | would want to thank you very much for this very, very nice talk and
interesting topic.

Prof Bibault: Thank you.

Prof Franco: And | would want to thank all the attendees for joining us tonight. And e-ESO, of course, as
always, thank you very much.

Prof Bibault: Thank you, bye-bye.

Prof Franco: Bye.



