

e-session 571

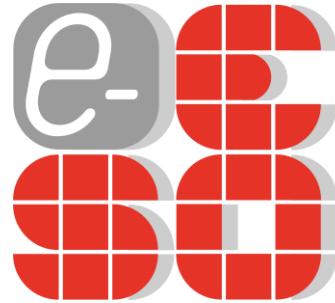
Particle therapy in the treatment of gynaecological cancers

Expert: **Dr Amelia Barcellini**, CNAO Foundation, Pavia, Italy

Discussant: **Dr Domenica Lorusso**, Policlinico Universitario Gemelli, Roma, Italy

Extract from the e-ESO policy

The website contains presentations aimed at providing new knowledge and competences, and is intended as an informational and educational tool mainly designed for oncology professionals and other physicians interested in oncology.


These materials remain property of the authors or ESO respectively.

ESO is not responsible for any injury and/or damage to persons or property as a matter of a products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material published in these presentations. Because of the rapid advances in medical sciences, we recommend that independent verification of diagnoses and drugs dosages should be made. Furthermore, patients and the general public visiting the website should always seek professional medical advice.

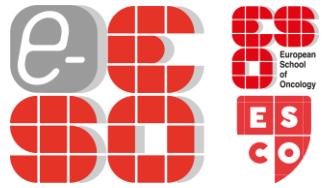
Finally, please note that ESO does not endorse any opinions expressed in the presentations.

To share your e-eso experience use:

#e_ESO

e-Sessions via e-ESO.net

Your free education is just a click away!


©2021 The European School of Oncology

Particle therapy in the treatment of gynaecological cancers

Amelia Barcellini, MD

Radiation Oncologist

National Center for Oncological Hadrontherapy

Disclosures

I have no actual or potential conflict of interest in relation to this presentation

Do not duplicate or distribute without
permission from the author and ESO

Agenda

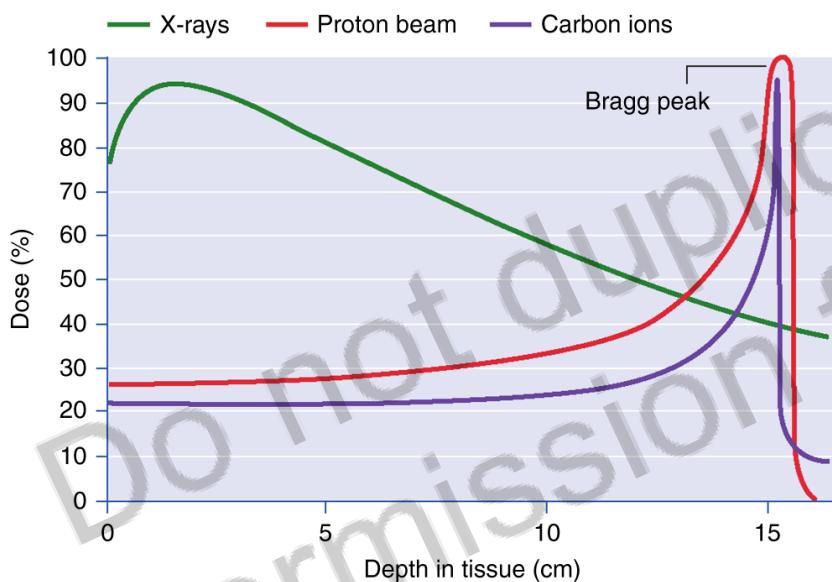
- Introduction: what is hadrontherapy?
- Rationale of hadrontherapy
- Current Evidence: role of hadrontherapy in gynecological malignancies
- Conclusions: Take Home Messages

Agenda

- Introduction: what is hadrontherapy?
- Rationale of hadrontherapy
- Current Evidence: role of hadrontherapy in gynecological malignancies
- Conclusions: Take Home Messages

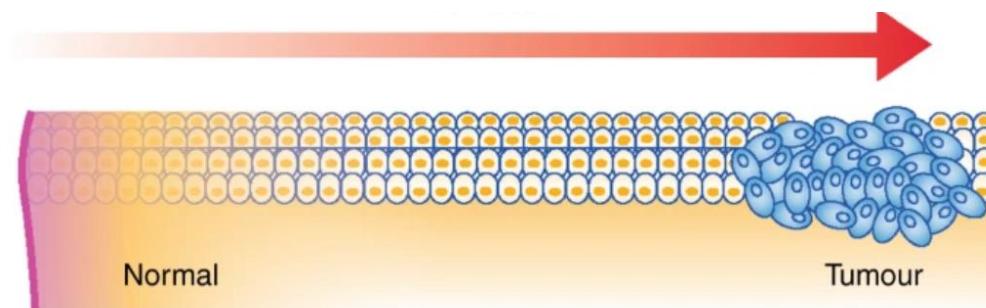
Introduction: what is hadrontherapy?

- Hadrontherapy (or particle therapy) is an innovative and promising form of RT using heavy particles (i.e. protons and carbon ions)


Do not duplicate or distribute without
permission from the author and ESO

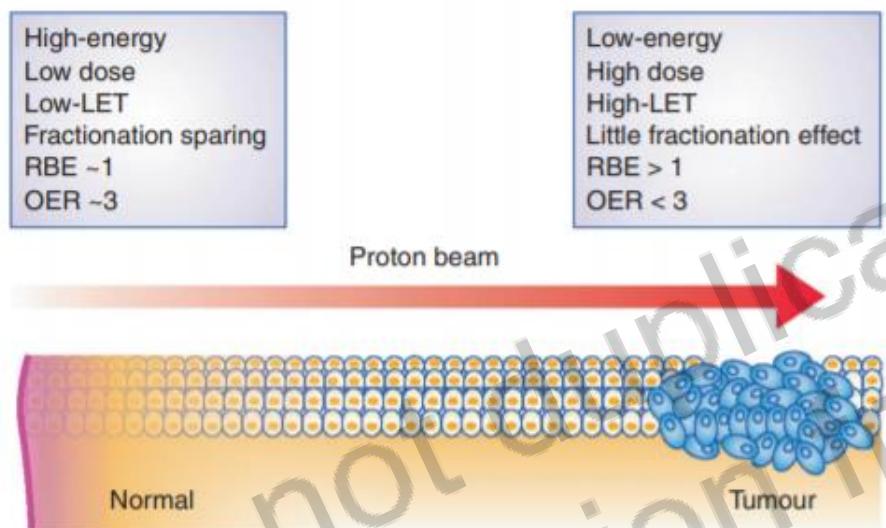
Introduction: what is hadrontherapy?

- Hadrontherapy (or particle therapy) is an innovative and promising form of RT using heavy particles (i.e. protons and carbon ions)
- Compared to traditional RT, it has dosimetric and radiobiological advantages


Introduction: what is hadrontherapy?

- Hadrontherapy (or particle therapy) is an innovative and promising form of RT using heavy particles (i.e. protons and carbon ions)
- Compared to traditional RT, it has dosimetric and radiobiological advantages
- Dosimetric hallmarks:

✓ **favourable depth-dose curve:**

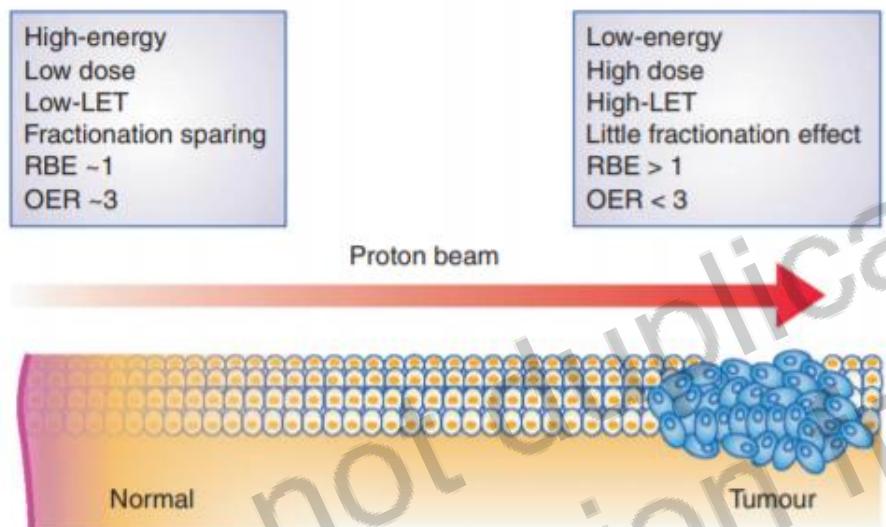

- X-ray energy decreases exponentially with dose
- Hadrons deposit most of their initial energy close to the end of the range (Bragg peak) within the tumour target

Durante M. Proton beam therapy in Europe: more centres need more research. Br J Cancer. 2019 Apr;120(8):777-778.

Introduction: what is hadrontherapy?

- Radiobiological hallmarks:

- ✓ charged particles have a **higher LET**, which ensures a **higher relative biological effectiveness (RBE)** than conventional RT


Durante M. Proton beam therapy in Europe: more centres need more research. *Br J Cancer*. 2019 Apr;120(8):777-778

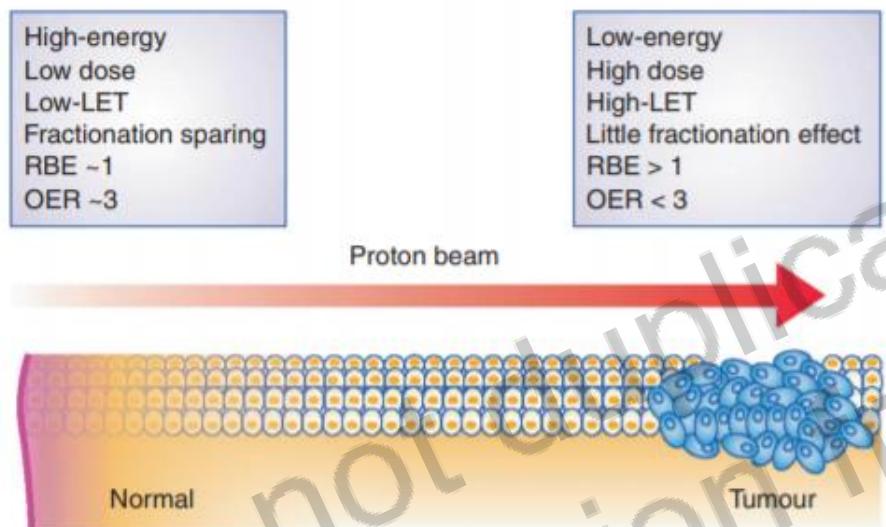
Tinganelli W, Durante M. Carbon Ion Radiobiology. *Cancers (Basel)*. 2020 Oct 17;12(10):3022

Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. *Int J Radiat Oncol Biol Phys*. 2004 Jul 15;59(4):928-42

Introduction: what is hadrontherapy?

- Radiobiological hallmarks:

- ✓ charged particles have a **higher LET**, which ensures a **higher relative biological effectiveness (RBE)** than conventional RT
- ✓ they can mainly induce more serious damage (i.e. **oxidative stress, more DNA double-strand breaks**)


Durante M. Proton beam therapy in Europe: more centres need more research. *Br J Cancer*. 2019 Apr;120(8):777-778

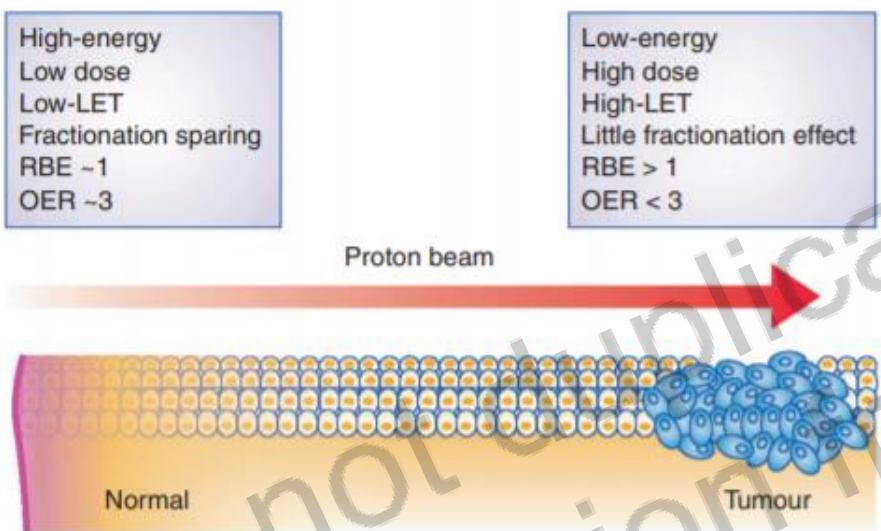
Tinganelli W, Durante M. Carbon Ion Radiobiology. *Cancers (Basel)*. 2020 Oct 17;12(10):3022

Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. *Int J Radiat Oncol Biol Phys*. 2004 Jul 15;59(4):928-42

Introduction: what is hadrontherapy?

- Radiobiological hallmarks:

- ✓ charged particles have a **higher LET**, which ensures a **higher relative biological effectiveness (RBE)** than conventional RT
- ✓ they can mainly induce more serious damage (i.e. **oxidative stress, more DNA double-strand breaks**)
- ✓ DSBs are the most lethal, as an accumulation of unrepaired or unrepaired DSBs can lead to a **massive loss of genetic information and cell death**


Durante M. Proton beam therapy in Europe: more centres need more research. *Br J Cancer*. 2019 Apr;120(8):777-778

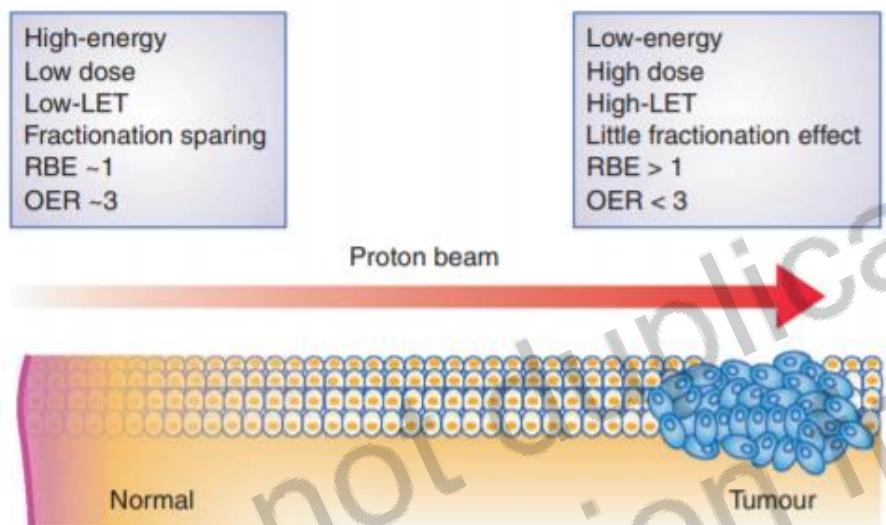
Tinganelli W, Durante M. Carbon Ion Radiobiology. *Cancers (Basel)*. 2020 Oct 17;12(10):3022

Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. *Int J Radiat Oncol Biol Phys*. 2004 Jul 15;59(4):928-42

Introduction: what is hadrontherapy?

- Radiobiological hallmarks:

- ✓ charged particles have a **higher LET**, which ensures a **higher relative biological effectiveness (RBE)** than conventional RT
- ✓ they can mainly induce more serious damage (i.e. **oxidative stress, more DNA double-strand breaks**)
- ✓ DSBs are the most lethal, as an accumulation of unrepaired or unrepaired DSBs can lead to a **massive loss of genetic information and cell death**
- ✓ Reduced dependence on fractionation and cell-cycle stage (cells are most sensitive to irradiation during mitosis and in G2, less sensitive in G1, and least sensitive during the latter part of S phase)


Durante M. Proton beam therapy in Europe: more centres need more research. *Br J Cancer*. 2019 Apr;120(8):777-778

Tinganelli W, Durante M. Carbon Ion Radiobiology. *Cancers (Basel)*. 2020 Oct 17;12(10):3022

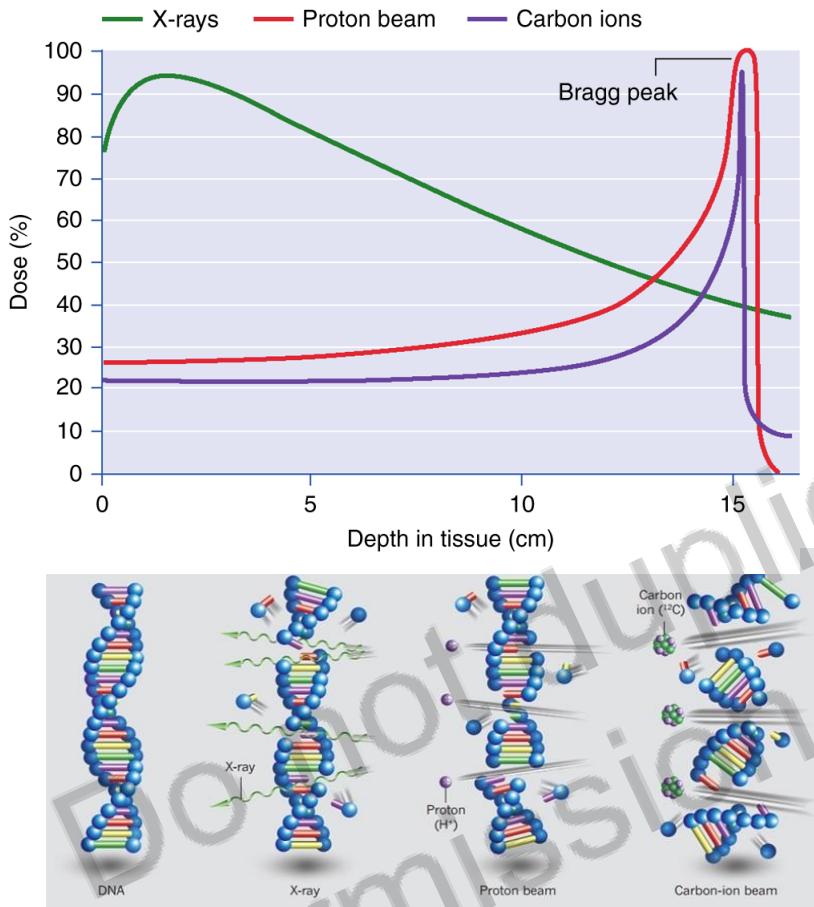
Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. *Int J Radiat Oncol Biol Phys*. 2004 Jul 15;59(4):928-42

Introduction: what is hadrontherapy?

- Radiobiological hallmarks:

- ✓ charged particles have a **higher LET**, which ensures a **higher relative biological effectiveness (RBE)** than conventional RT
- ✓ they can mainly induce more serious damage (i.e. **oxidative stress, more DNA double-strand breaks**)
- ✓ DSBs are the most lethal, as an accumulation of unrepaired or unrepaired DSBs can lead to a **massive loss of genetic information and cell death**
- ✓ Reduced dependence on fractionation and cell-cycle stage (cells are most sensitive to irradiation during mitosis and in G2, less sensitive in G1, and least sensitive during the latter part of S phase)
- ✓ Reduced oxygen enhancement ratio (**OER**) in the tumour

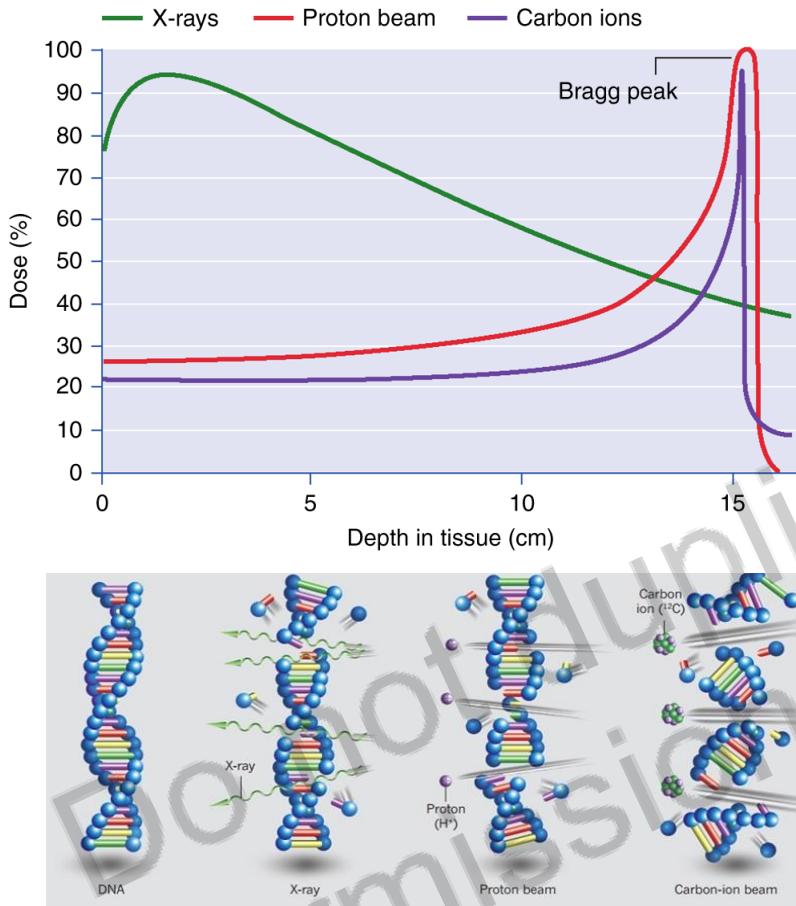
Durante M. Proton beam therapy in Europe: more centres need more research. *Br J Cancer*. 2019 Apr;120(8):777-778


Tinganelli W, Durante M. Carbon Ion Radiobiology. *Cancers (Basel)*. 2020 Oct 17;12(10):3022

Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. *Int J Radiat Oncol Biol Phys*. 2004 Jul 15;59(4):928-42

Agenda

- Introduction: what is hadrontherapy?
- Rationale of hadrontherapy
- Current Evidence: role of hadrontherapy in gynecological malignancies
- Conclusions: Take Home Messages


Rationale of hadrontherapy

- Normal tissue sparing, higher dose to tumor
- Effectiveness to hypoxic and radioresistant tumors

Durante M. Proton beam therapy in Europe: more centres need more research. Br J Cancer. 2019 Apr;120(8):777-778
Tinganelli W, Durante M. Carbon Ion Radiobiology. Cancers (Basel). 2020 Oct 17;12(10):3022

Rationale of hadrontherapy

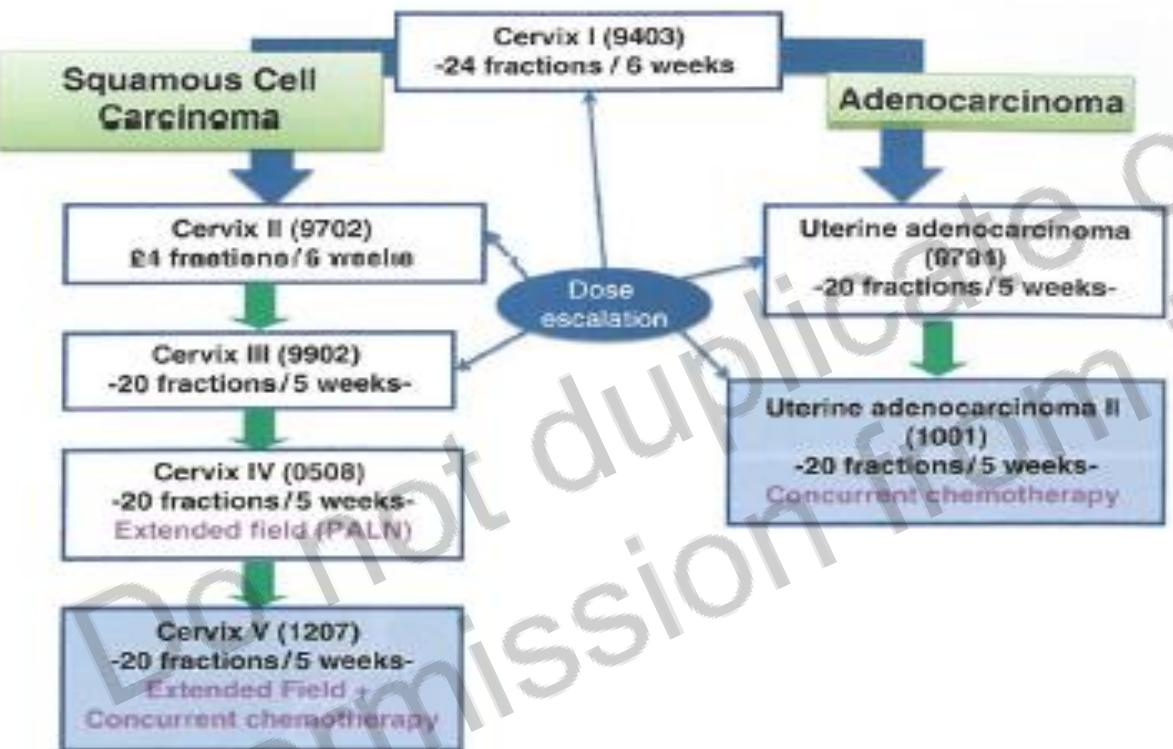
- Normal tissue sparing, higher dose to tumor:
- Effectiveness to hypoxic and radioresistant tumors

suitable for tumors close to radiation-sensitive organs (bowel, spinal cord, brain...), slow-growing tumors, oxygen-poor tumors or local recurrences after photon beam radiotherapy

Durante M. Proton beam therapy in Europe: more centres need more research. Br J Cancer. 2019 Apr;120(8):777-778
Tinganelli W, Durante M. Carbon Ion Radiobiology. Cancers (Basel). 2020 Oct 17;12(10):3022

Rationale of hadrontherapy

- **Cervical adenocarcinoma** is relatively radioresistant compare to squamous cell carcinoma with poorer OS and LC results under conventional chemoradiotherapy
 - ✓ 5-y Locoregional failure rate $\geq 30\%$ (pelvis is the main site of relapses)
 - ✓ 5.y OS rate: 20.3% (especially for III, IVA)
- **Primary gynecological melanomas** rare, radio-chemoresistant and aggressive cancers
 - ✓ 5-year OS of 37-50% for vulvar, 13-32% for vaginal, and approximately 10% for cervical melanoma
- **Inoperable endometrial carcinoma** in patients unfit for BT
 - ✓ 3-10% medically inoperable and unfit for BT
- **Recurrence in-field**


*Grigsby PW et al. 1988 ;Gien LT et al 2010;
Gadducci A et 2018,Wang et al 2019 ,Lee MY et al 2015.*

Agenda

- Introduction: what is hadrontherapy?
- Rationale of hadrontherapy
- Current Evidence: role of hadrontherapy in gynecological malignancies
- Conclusions: Take Home Messages

Current Evidence: role of hadrontherapy in gynecological malignancies

- In 1994 at NIRS (Japan), clinical trials of the use of CIRT for locally advanced cervical cancer started

- ✓ **PROTOCOL 9403:** first study that demonstrates advantages in LC for very advanced disease (probably for hypoxic tissues)
- ✓ **PROTOCOL 9403&9702:** phase I and II dose escalation study that demonstrates that maximum tolerance dose to rectum of 60 GyE
- ✓ In all studies:
 - ✓ Total dose ranged from 52.8 GyE to 74.4 GyE
 - ✓ Whole pelvic irradiation (GTV + elective nodes irradiation)
 - ✓ Good LC with poor systemic control that lead to combo treatment (**Protocol 1207 and 1001**)

Current Evidence: role of hadrontherapy in gynecological malignancies

- PROTOCOL 9902: dose escalation study

No. of patients	22
Follow-up, range (median) (mo)	7.0-134.8 (47.3)
Age, range (mean) (y)	31-80 (58.0)
Performance status	
0-1	21
2	1
Stage	
IIB	1
IIIB	18
IVA	3
Lymph node status	
Negative	14
Positive	8
Tumor size (cm), range (median)	4.0-12.0 (6.2)
<5.0	1
5.0-6.9	14
≥7.0	7

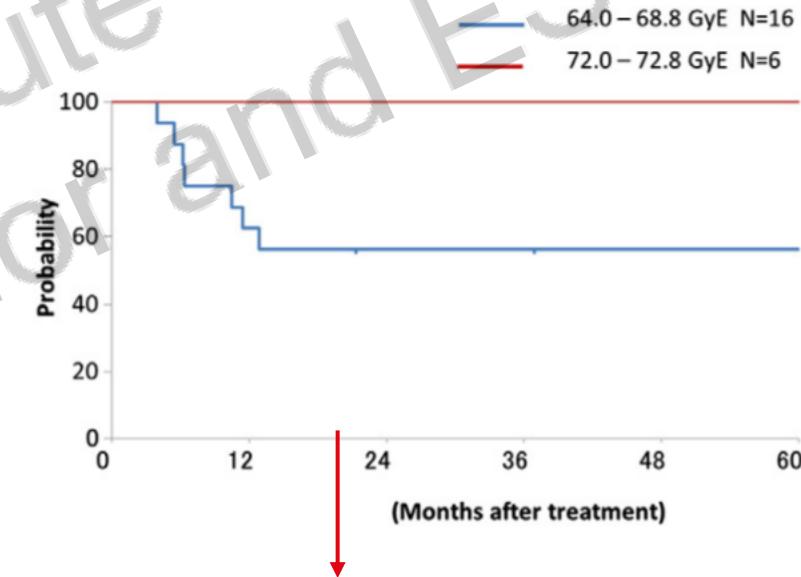

- ✓ Total dose to the cervical tumor: 64.0–72.0 GyE for 20 fractions
- ✓ **OTT** ranged from 32 to 37 days, **with a median of 36 days**
- ✓ Median follow-up durations for all patients: 47 months
- ✓ Median follow-up for surviving patients: 116 months

Wakatsuki M et al Dose-escalation study of carbon ion radiotherapy for locally advanced squamous cell carcinoma of the uterine cervix (9902). *Gynecol Oncol.* 2014 Jan;132(1):87-92.

Current Evidence: role of hadrontherapy in gynecological malignancies

- PROTOCOL 9902: dose escalation study

No. of patients	22
Follow-up, range (median) (mo)	7.0-134.8 (47.3)
Age, range (mean) (y)	31-80 (58.0)
Performance status	
0-1	21
2	1
Stage	
IIB	1
IIIB	18
IVA	3
Lymph node status	
Negative	14
Positive	8
Tumor size (cm), range (median)	4.0-12.0 (6.2)
<5.0	1
5.0-6.9	14
≥7.0	7


- ✓ Total dose to the cervical tumor: 64.0-72.0 GyE for 20 fractions
- ✓ OTT ranged from 32 to 37 days, with a median of 36 days
- ✓ Median follow-up durations for all patients: 47 months
- ✓ Median follow-up for surviving patients: 116 months
- ✓ The 5-year OS rate and LC rate were 50.0% and 68.2%, respectively

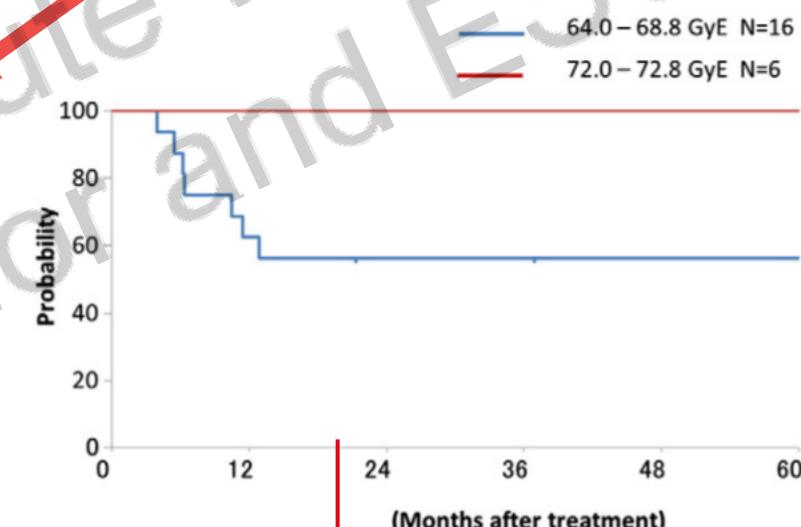
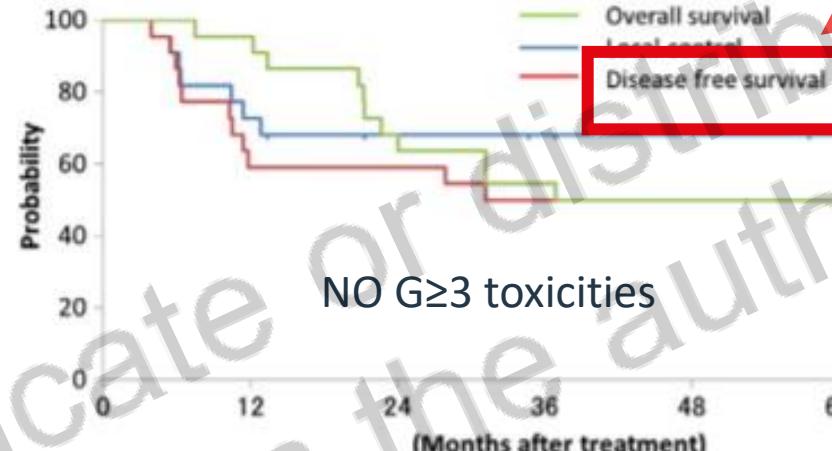
Wakatsuki M et al Dose-escalation study of carbon ion radiotherapy for locally advanced squamous cell carcinoma of the uterine cervix (9902). *Gynecol Oncol.* 2014 Jan;132(1):87-92.

Current Evidence: role of hadrontherapy in gynecological malignancies

- PROTOCOL 9902: dose escalation study

No. of patients	22
Follow-up, range (median) (mo)	7.0–134.8 (47.3)
Age, range (mean) (y)	31–80 (58.0)
Performance status	
0–1	21
2	1
Stage	
IIIB	1
IIIB	18
IVA	3
Lymph node status	
Negative	14
Positive	8
Tumor size (cm), range (median)	4.0–12.0 (6.2)
<5.0	1
5.0–6.9	14
≥7.0	7

- ✓ Total dose to the cervical tumor: 64.0–72.0 GyE for 20 fractions
- ✓ OTT ranged from 32 to 37 days, with a median of 36 days
- ✓ Median follow-up durations for all patients: 47 months
- ✓ Median follow-up for surviving patients: 116 months
- ✓ The 5-year OS rate and LC rate were 50.0% and 68.2%, respectively



5-y LC for patients receiving
64.0 or 68.0 GyE was 56.2%
vs
100% for patients receiving 72.0 GyE
($p = 0.069$)

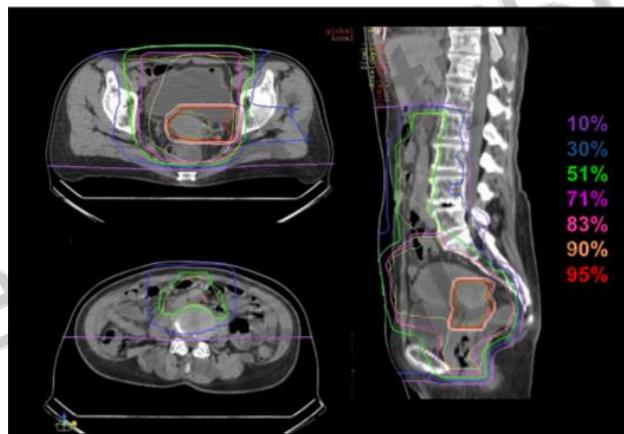
Wakatsuki M et al Dose-escalation study of carbon ion radiotherapy for locally advanced squamous cell carcinoma of the uterine cervix (9902). Gynecol Oncol. 2014 Jan;132(1):87-92.

Current Evidence: role of hadrontherapy in gynecological malignancies

- **PROTOCOL 9902:** dose escalation study

No. of patients	22
Follow-up, range (median) (mo)	7.0–134.8 (47.3)
Age, range (mean) (y)	31–80 (58.0)
Performance status	
0–1	21
2	1
Stage	
IIB	1
IIIB	18
IVA	3
Lymph node status	
Negative	14
Positive	8
Tumor size (cm), range (median)	4.0–12.0 (6.2)
<5.0	1
5.0–6.9	14
≥7.0	7

- ✓ Total dose to the cervical tumor: 64.0–72.0 GyE for 20 fractions
- ✓ OTT ranged from 32 to 37 days, with a median of 36 days
- ✓ Median follow-up durations for all patients: 47 months
- ✓ Median follow-up for surviving patients: 116 months
- ✓ **The 5-year OS rate and LC rate were 50.0% and 68.2%, respectively**

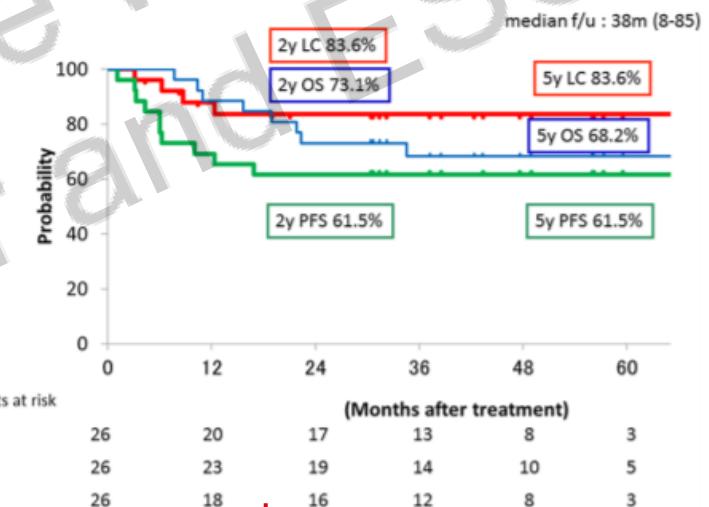
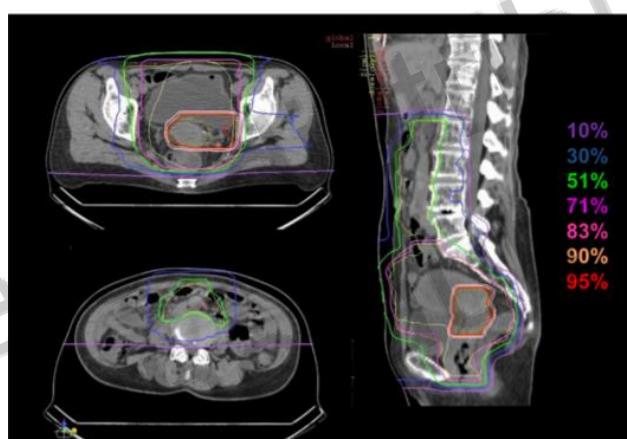

5-y LC for patients receiving
64.0 or 68.0 GyE was 56.2%
vs
100% for patients receiving 72.0 GyE
($p = 0.069$)

Wakatsuki M et al Dose-escalation study of carbon ion radiotherapy for locally advanced squamous cell carcinoma of the uterine cervix (9902). Gynecol Oncol. 2014 Jan;132(1):87-92.

Current Evidence: role of hadrontherapy in gynecological malignancies

- PROTOCOL 0508: extended field RT study

No. of patients		26
Follow-up	range (median) (mo)	8–85 (38)
Age	range (mean) (y)	32–78 (59)
Performance status		26
Stage (FIGO)		
	IIB	13
	IIIB	11
	IVA	2
Pelvic lymph node status		
	Negative	6
	Positive	20
Tumor size		
	range (cm) (median)	4.0–10.0 (6.1)
	< 5.0	7
	5.0–6.9	13
	≥ 7.0	6

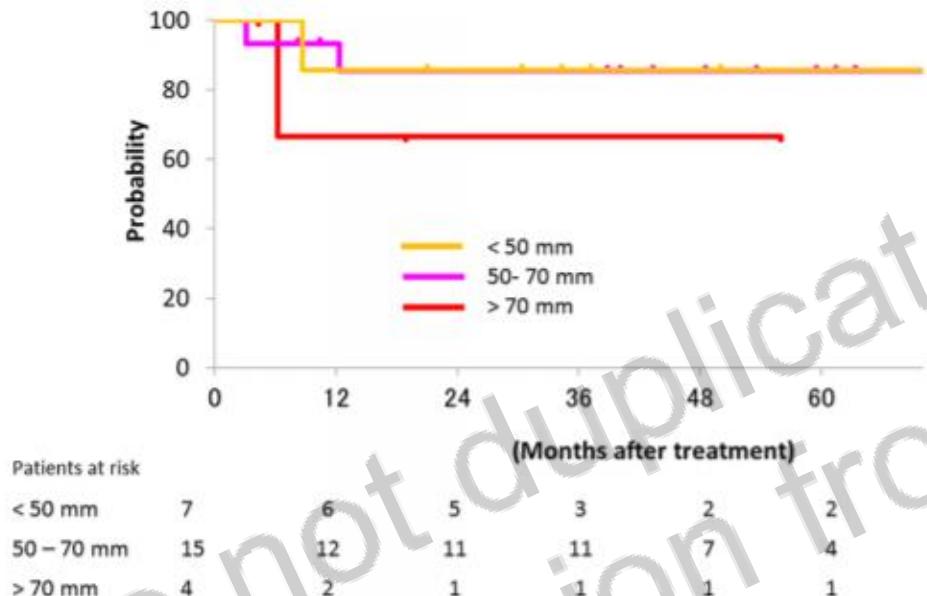


- ✓ Pelvis + para-aortic nodes: 39.0 GyE/13 fx, additional 15.0 GyE/5 fx to GTV and surrounding tissues; local boost up to 18.0 GyE /2 fx
- ✓ Total dose to the cervical tumor was 72.0 GyE over 20 fractions

Wakatsuki M et al Clinical trial of prophylactic extended-field carbon-ion radiotherapy for locally advanced uterine cervical cancer (protocol 0508). PLoS One. 2015 May 20;10(5):e0127587

Current Evidence: role of hadrontherapy in gynecological malignancies

- PROTOCOL 0508: extended field RT study

No. of patients	26	
Follow-up	range (median) (mo) range (mean) (y)	8–85 (38) 32–78 (59)
Age		
Performance status	0–1	26
Stage (FIGO)	IIB	13
	IIIB	11
	IVA	2
Pelvic lymph node status	Negative	6
	Positive	20
Tumor size	range (cm) (median)	4.0–10.0 (6.1)
	< 5.0	7
	5.0–6.9	13
	≥ 7.0	6

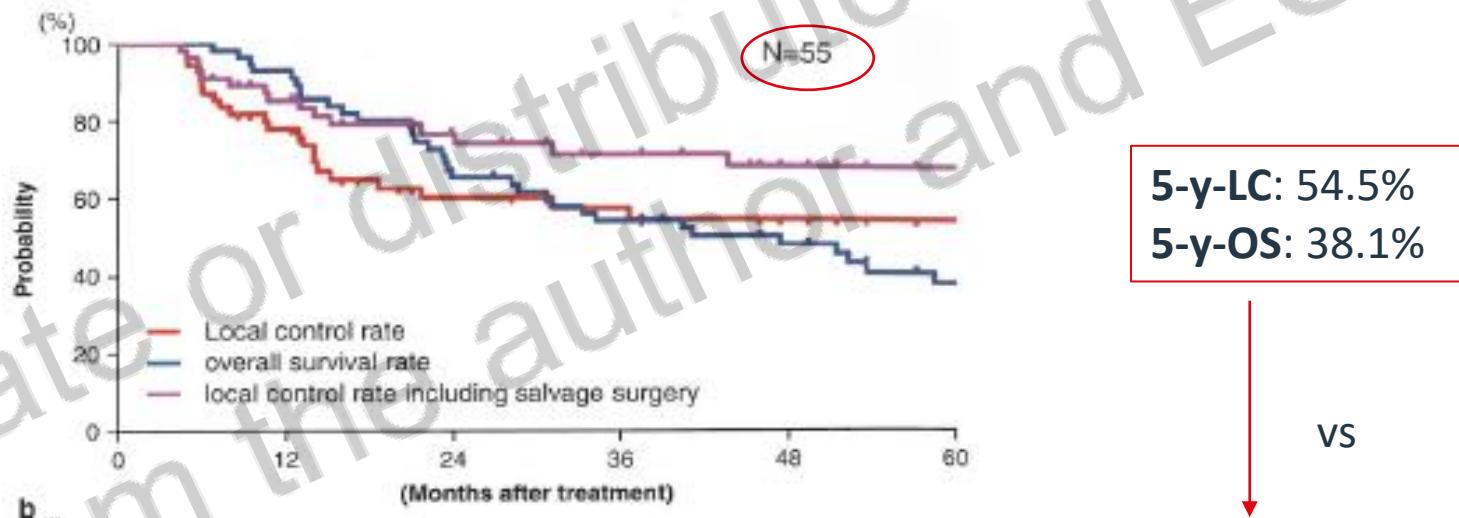

- ✓ Pelvis + para-aortic nodes: 39.0 GyE/13 fx; additional 15.0 GyE/5 fx to GTV and surrounding tissues; local boost up to 18.0 GyE /2 fx
- ✓ Total dose to the cervical tumor was 72.0 GyE over 20 fractions

- ✓ No concurrent chemotherapy
- ✓ Unsatisfactory OS-PFS
- ✓ 26.9% of the patients developed distant failure

Wakatsuki M et al Clinical trial of prophylactic extended-field carbon-ion radiotherapy for locally advanced uterine cervical cancer (protocol 0508). PLoS One. 2015 May 20;10(5):e0127587

Current Evidence: role of hadrontherapy in gynecological malignancies

- PROTOCOL 0508: extended field RT study

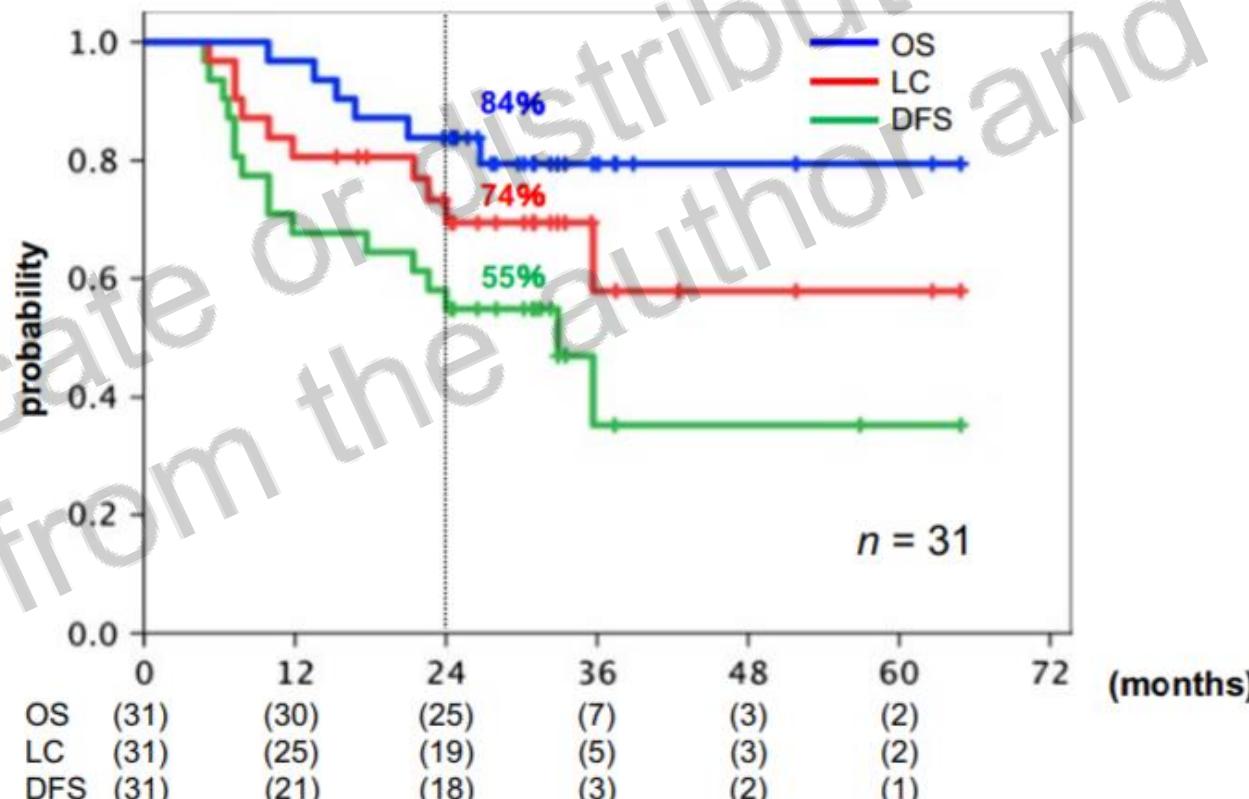

- ✓ Protocols 9702 and 9902: the PALN failure rate was 25.0% and in pelvic lymph node-positive patients, PALN failure was seen at a high rate of 44.4%
- ✓ Protocol 0508:
 - 1/26 patients developed PALN failure
 - cumulative PALN failure rate was 5.3% (95%CI: 0-- 15.3%)
 - better control for smaller GTV
 - 2-year and 5-year local control rate for < 50 mm, 50-70 mm, and > 70 mm were 86%, 86% and 67%

Wakatsuki M et al Clinical trial of prophylactic extended-field carbon-ion radiotherapy for locally advanced uterine cervical cancer (protocol 0508). PLoS One. 2015 May 20;10(5):e0127587

Current Evidence: role of hadrontherapy in gynecological malignancies

- PROTOCOL 9704 : adenocarcinoma of the uterine cervix

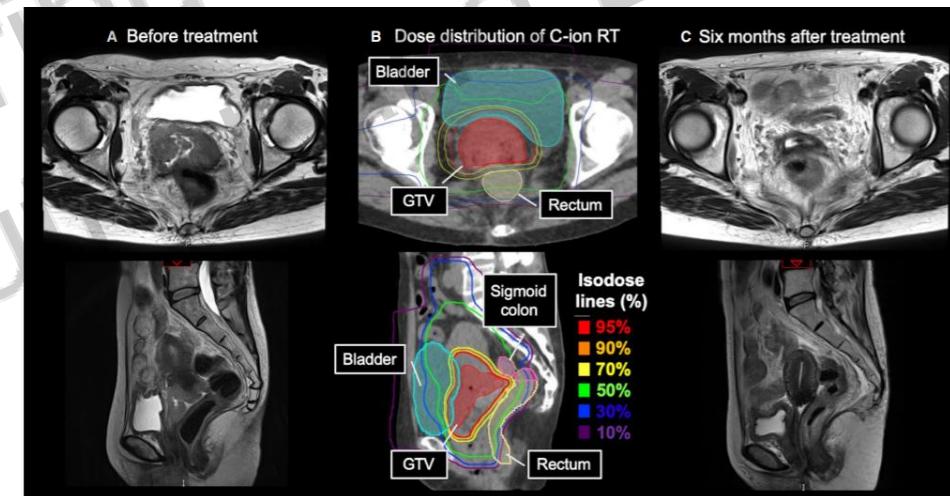
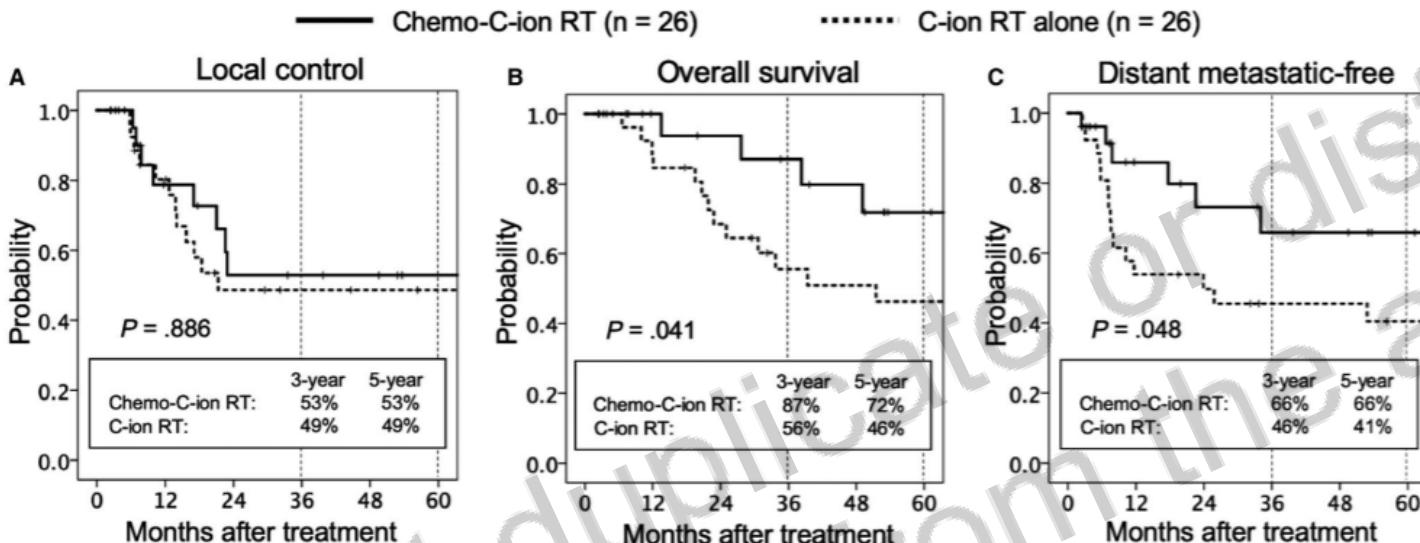
Characteristic	Cases of Analysis for Toxicity (No. of Analyses for Efficacy)
Cases of uterine cervix	58 (55)
Age (median)	28-85 y (59 y)
<i>Histology</i>	
Adenocarcinoma	45 (42)
Adenosquamous carcinoma	13 (13)
<i>FIGO stage</i>	
IIB	20 (20)
IIIB	35 (33)
IVA	3 (2)
Tumor size (median)	3.0-11.8 cm (5.5 cm)
<5 cm	19 (17)
≤5 cm to >7 cm	29 (28)
≤7 cm	10 (10)
<i>Lymph node</i>	
N1	27 (24)
N0	31 (31)
<i>Dose (C-ion RT)</i>	
62.4 GyE/20 fractions	4 (3)
64.8 GyE/20 fractions	4 (4)
68.0 GyE/20 fractions	10 (10)
71.2 GyE/20 fractions	23 (21)
74.4 GyE/20 fractions	17 (17)


Authors	stage	n.pts	RT	OS	LC
Grigsby et al	III	12	RT	25% (5y)	33% (5y)
Eifel et al	III	61	RT	35% (2-y); 26% (5 y)	46% (5y)
Niibe et al	IIIB	61	RT/RCT	22% (5y)	36% (5y)
Huang et al	III	28	RT/RCT	29% (5y)	58% (5y)

Wakatsuki M et al Clinical outcomes of carbon ion radiotherapy for locally advanced adenocarcinoma of the uterine cervix in phase 1/2 clinical trial (protocol 9704). Cancer. 2014

Current Evidence: role of hadrontherapy in gynecological malignancies

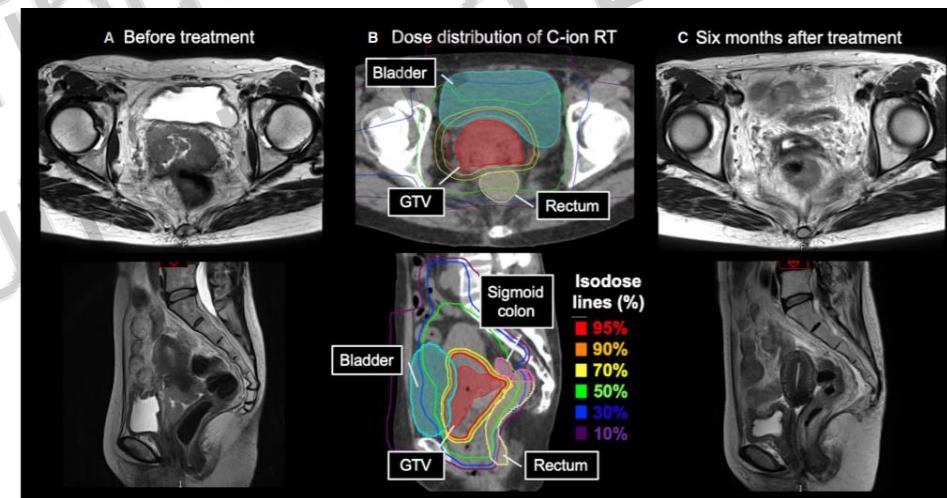
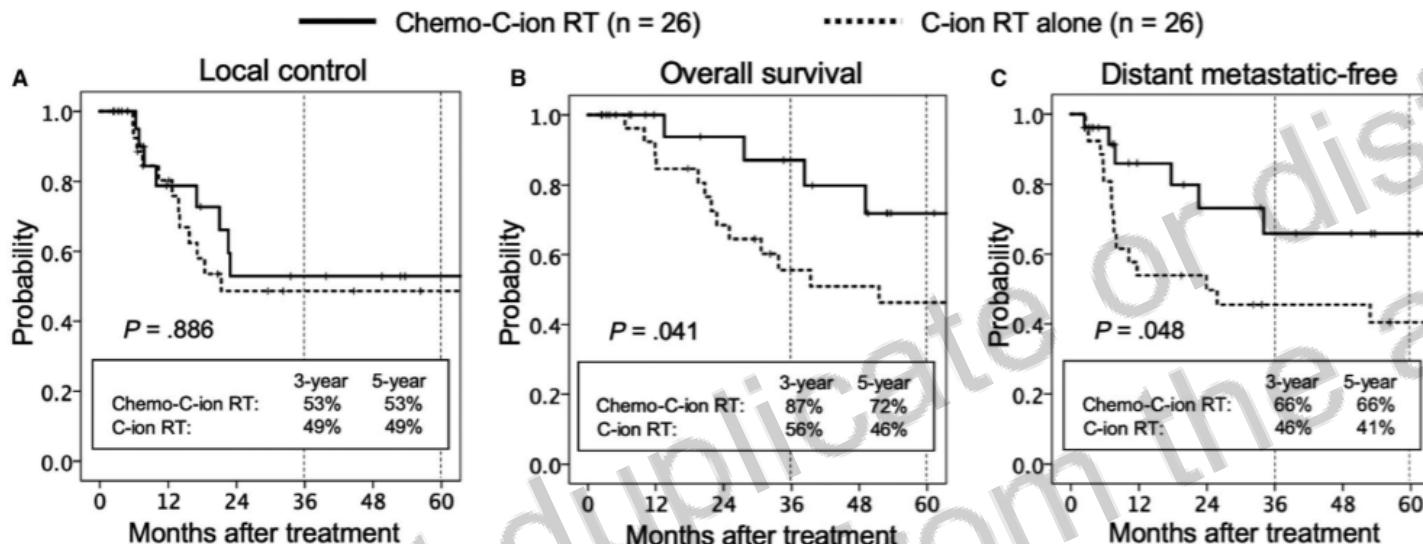
- PROTOCOL 1001: concurrent chemotherapy



Characteristics	No. of patients enrolled (No. of patients analyzed)
Cases of uterine cervix	33 (21)
Age [median], years	26-70 [47] (26-70 [47])
Histology	
Mucinous adenocarcinoma	17 (17)
Endometrioid adenocarcinoma	7 (6)
Clear cell carcinoma	3 (3)
Adenosquamous carcinoma	6 (5)
UICC TNM stage	
II B	20 (19)
III B	10 (9)
IVA	3 (3)
Tumor size [median], cm	3.0-9.7 [5.2] (3.0-9.7 [5.4])
<5 cm	13 (12)
≤5 cm to >7 cm	12 (11)
≤7 cm	8 (8)
Pelvic LN metastasis	
Yes	14 (12)
No	19 (19)
Dose of C-ion RT	
58.0 Gy (RBE) in 20 fractions	3 (3)
71.2 Gy (RBE) in 20 fractions	3 (3)
74.4 Gy (RBE) in 20 fractions	27 (25)
No. of weekly CDDP administration	
0 time	2 (0)
3 times	1 (1)
4 times	6 (6)
5 times	24 (24)

Okonogi N et al Clinical outcomes of carbon ion radiotherapy with concurrent chemotherapy for locally advanced uterine cervical adenocarcinoma in a phase 1/2 clinical trial (Protocol 1001). Cancer Med. 2018 Feb;7(2):351-359

Current Evidence: role of hadrontherapy in gynecological malignancies

- Score-matched analysis (2020)

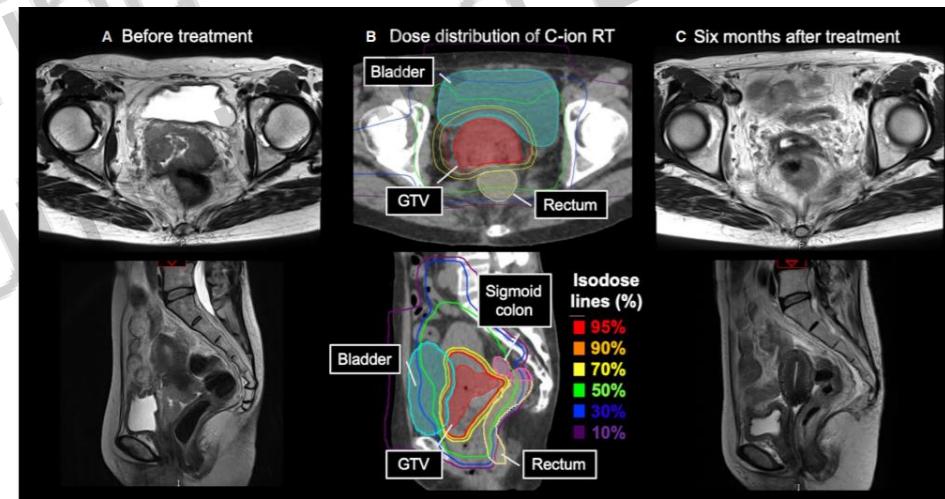
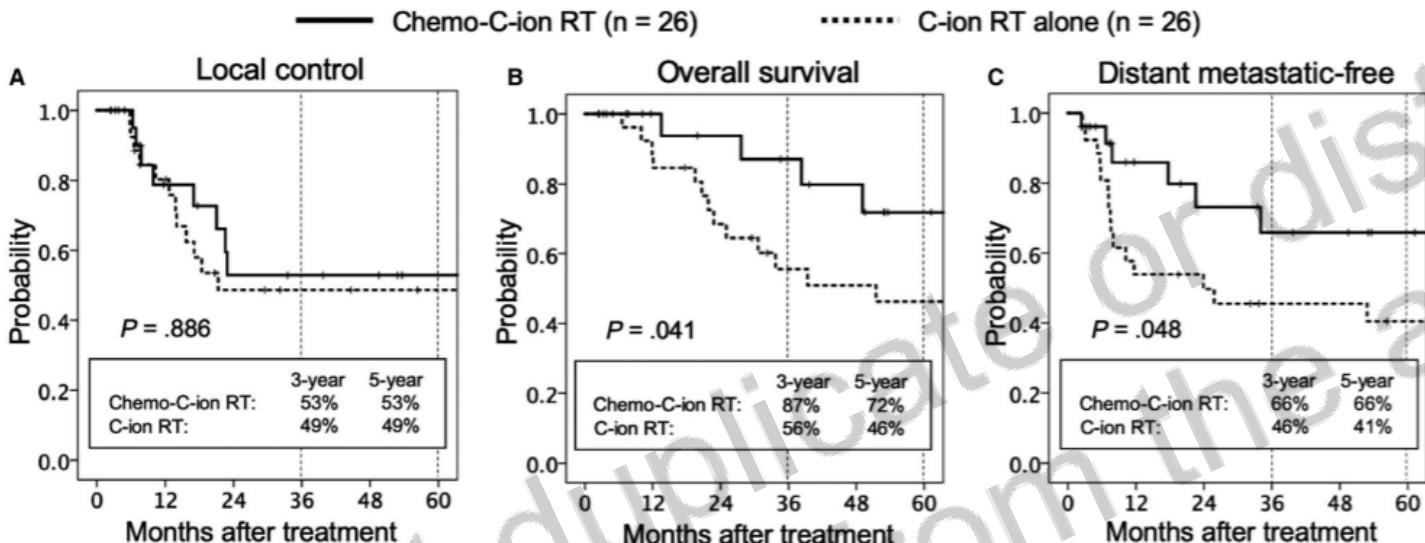



- 26 patients who underwent CIRT vs 26 who underwent chemo-CIRT for Adenocarcinoma
- Median age and follow-up period were 57 (range, 28-79) years and 34 (range, 2-126) months

Okonogi, Noriyuki et al. "Significance of concurrent use of weekly cisplatin in carbon-ion radiotherapy for locally advanced adenocarcinoma of the uterine cervix: A propensity score-matched analysis." Cancer medicine vol. 9,4 (2020)

Current Evidence: role of hadrontherapy in gynecological malignancies

- Score-matched analysis (2020)

- 26 patients who underwent CIRT vs 26 who underwent chemo-CIRT for Adenocarcinoma
- Median age and follow-up period were 57 (range, 28-79) years and 34 (range, 2-126) months
- 5-year OS rate was significantly better in the chemo-CIRT (72%) than in CIRT (46%; P = .041)
- 5-year distant metastatic-free rate was significantly better in the chemo-CIRT(66%) than in the CIRT group (41%; P =.048)

Okonogi, Noriyuki et al. "Significance of concurrent use of weekly cisplatin in carbon-ion radiotherapy for locally advanced adenocarcinoma of the uterine cervix: A propensity score-matched analysis." Cancer medicine vol. 9,4 (2020)

Current Evidence: role of hadrontherapy in gynecological malignancies

- Score-matched analysis (2020)

- 26 patients who underwent CIRT vs 26 who underwent chemo-CIRT for Adenocarcinoma
- Median age and follow-up period were 57 (range, 28-79) years and 34 (range, 2-126) months
- 5-year **OS rate was significantly better in the chemo-CIRT (72%) than in CIRT (46%; $P = .041$)**
- 5-year **distant metastatic-free rate was significantly better in the chemo-CIRT(66%) than in the CIRT group (41%; $P = .048$)**
- Grade ≥ 3 late toxicities was comparable between the two groups

Okonogi, Noriyuki et al. "Significance of concurrent use of weekly cisplatin in carbon-ion radiotherapy for locally advanced adenocarcinoma of the uterine cervix: A propensity score-matched analysis." Cancer medicine vol. 9,4 (2020)

Current Evidence: role of hadrontherapy in gynecological malignancies

- Mucosal Malignant Melanoma of the lower genital tract are really rare and aggressive malignancies with a 5-year OS of 37–50% for vulvar, 13–32% for vaginal, and approximately 10% for cervical melanoma

Gadducci A, Carinelli S, Guerrieri ME, Aletti GD. Melanoma of the lower genital tract: Prognostic factors and treatment modalities. *Gynecol Oncol*. 2018 Jul;150(1):180-189. doi: 10.1016/j.ygyno.2018.04.56

Current Evidence: role of hadrontherapy in gynecological malignancies

- Mucosal Malignant Melanoma of the lower genital tract are really rare and aggressive malignancies with a 5-year OS of 37–50% for vulvar, 13–32% for vaginal, and approximately 10% for cervical melanoma
- Treatment is based on both the current data concerning gynecological cancers as well as standard management of cutaneous melanoma

Gadducci A, Carinelli S, Guerrieri ME, Aletti GD. Melanoma of the lower genital tract: Prognostic factors and treatment modalities. *Gynecol Oncol*. 2018 Jul;150(1):180-189. doi: 10.1016/j.ygyno.2018.04.56

Current Evidence: role of hadrontherapy in gynecological malignancies

- Mucosal Malignant Melanoma of the lower genital tract are really rare and aggressive malignancies with a 5-year OS of 37–50% for vulvar, 13–32% for vaginal, and approximately 10% for cervical melanoma
- Treatment is based on both the current data concerning gynecological cancers as well as standard management of cutaneous melanoma
- Surgery is the treatment of choice (early stages)
- Sometimes they present surgical challenges due to the proximity of bladder, anus and rectum

Gadducci A, Carinelli S, Guerrieri ME, Aletti GD. Melanoma of the lower genital tract: Prognostic factors and treatment modalities. *Gynecol Oncol*. 2018 Jul;150(1):180-189. doi: 10.1016/j.ygyno.2018.04.56

Current Evidence: role of hadrontherapy in gynecological malignancies

- Mucosal Malignant Melanoma of the lower genital tract are really rare and aggressive malignancies with a 5-year OS of 37–50% for vulvar, 13–32% for vaginal, and approximately 10% for cervical melanoma
- Treatment is based on both the current data concerning gynecological cancers as well as standard management of cutaneous melanoma
- Surgery is the treatment of choice (early stages)
- Sometimes they present surgical challenges due to the proximity of bladder, anus and rectum
- Adjuvant treatment is unproven

Gadducci A, Carinelli S, Guerrieri ME, Aletti GD. Melanoma of the lower genital tract: Prognostic factors and treatment modalities. *Gynecol Oncol*. 2018 Jul;150(1):180-189. doi: 10.1016/j.ygyno.2018.04.56

Current Evidence: role of hadrontherapy in gynecological malignancies

- Mucosal Malignant Melanoma of the lower genital tract are really rare and aggressive malignancies with a 5-year OS of 37–50% for vulvar, 13–32% for vaginal, and approximately 10% for cervical melanoma
- Treatment is based on both the current data concerning gynecological cancers as well as standard management of cutaneous melanoma
- Surgery is the treatment of choice (early stages)
- Sometimes they present surgical challenges due to the proximity of bladder, anus and rectum
- Adjuvant treatment is unproven
- Radiotherapy can be used in the adjuvant setting, in patients with positive surgical margins or histologically positive nodes

Gadducci A, Carinelli S, Guerrieri ME, Aletti GD. Melanoma of the lower genital tract: Prognostic factors and treatment modalities. *Gynecol Oncol*. 2018 Jul;150(1):180-189. doi: 10.1016/j.ygyno.2018.04.56

Current Evidence: role of hadrontherapy in gynecological malignancies

- Mucosal Malignant Melanoma and CIRT

Characteristics	Number of Patients	%
Age (median), years	51–88 (71)	
Tumor site		
Vagina	22	60
Vulva	12	32
Cervix uterus	3	8
Prior treatment		
Surgery	9	24
Chemotherapy	3	8
None	25	68
T stage (including recurrent T stage)		
T1	8	22
T2	21	56
T3	8	22
Tumor size in maximal diameter		
≤30 mm	29	78
>30 mm	8	22
Lymph node metastasis		
Positive	5	14
Negative	32	86
The reason for inoperability		
Medically inoperable	27	73
Patient's refusal	10	27
Total dose of C-ion RT		
57.6 Gy (RBE) in 16 fractions	35	95
64.0 Gy (RBE) in 16 fractions	2	5
Adjuvant therapy		
DAV/DAV Feron	9	24
Nivolumab	1	3
None	27	73

- Retrospective analysis of 37 patients
- Median follow-up periods: 23 months (range: 5–103 months) for all patients and 53 months (range: 16–103 months) for survivors

Current Evidence: role of hadrontherapy in gynecological malignancies

- Mucosal Malignant Melanoma and CIRT

Characteristics	Number of Patients	%
Age (median), years	51-88 (71)	
Tumor site		
Vagina	22	60
Vulva	12	32
Cervix uterus	3	8
Prior treatment		
Surgery	9	24
Chemotherapy	3	8
None	25	68
T stage (including recurrent T stage)		
T1	8	22
T2	21	56
T3	8	22
Tumor size in maximal diameter		
≤30 mm	29	78
>30 mm	8	22
Lymph node metastasis		
Positive	5	14
Negative	32	86
The reason for inoperability		
Medically inoperable	27	73
Patient's refusal	10	27
Total dose of C-ion RT		
57.6 Gy (RBE) in 16 fractions	35	95
64.0 Gy (RBE) in 16 fractions	2	5
Adjuvant therapy		
DAV/DAV Feron	9	24
Nivolumab	1	3
None	27	73

- Retrospective analysis of 37 patients
- Median follow-up periods: 23 months (range: 5–103 months) for all patients and 53 months (range: 16–103 months) for survivors
- Mainly vaginal and vulvar tumors

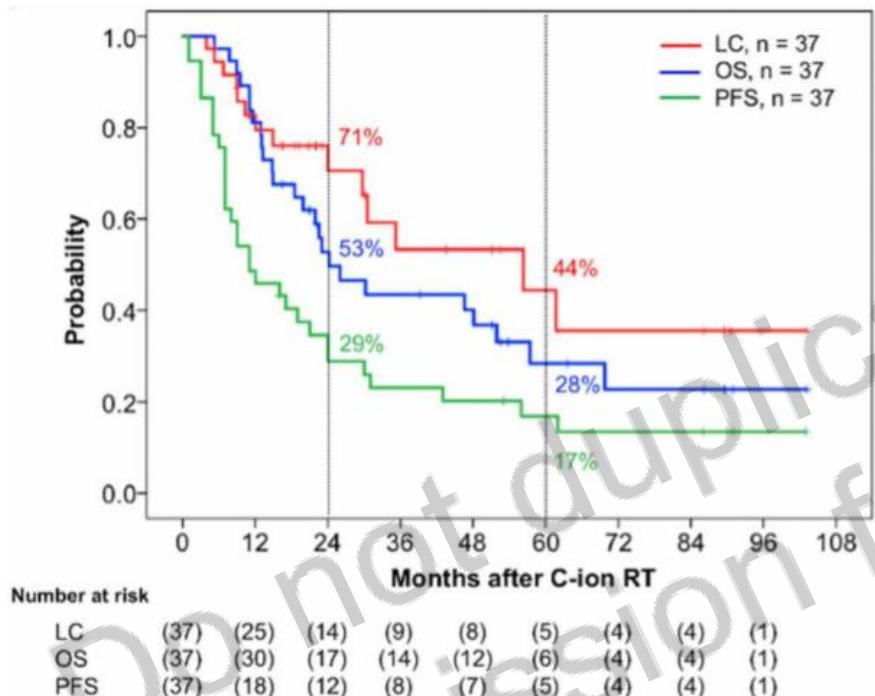
Current Evidence: role of hadrontherapy in gynecological malignancies

- Mucosal Malignant Melanoma and CIRT

Characteristics	Number of Patients	%
Age (median), years	51–88 (71)	
Tumor site		
Vagina	22	60
Vulva	12	32
Cervix uterus	3	8
Prior treatment		
Surgery	9	24
Chemotherapy	3	8
None	25	68
T stage (including recurrent T stage)		
T1	8	22
T2	21	56
T3	8	22
Tumor size in maximal diameter		
≤30 mm	29	78
>30 mm	8	22
Lymph node metastasis		
Positive	5	14
Negative	32	86
The reason for inoperability		
Medically inoperable	27	73
Patient's refusal	10	27
Total dose of C-ion RT		
57.6 Gy (RBE) in 16 fractions	35	95
64.0 Gy (RBE) in 16 fractions	2	5
Adjuvant therapy		
DAV/DAV Feron	9	24
Nivolumab	1	3
None	27	73

- Retrospective analysis of 37 patients
- Median follow-up periods: 23 months (range: 5–103 months) for all patients and 53 months (range: 16–103 months) for survivors
- Mainly vaginal and vulvar tumors
- 9 were post-surgical recurrences and 3 women underwent chemotherapy before CIRT

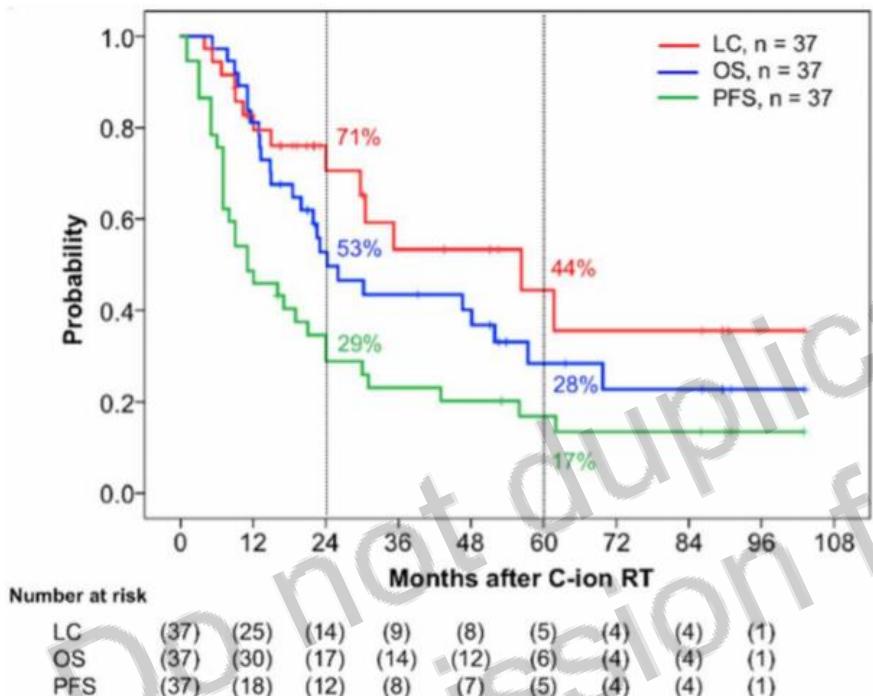
Current Evidence: role of hadrontherapy in gynecological malignancies


- Mucosal Malignant Melanoma and CIRT

Characteristics	Number of Patients	%
Age (median), years	51–88 (71)	
Tumor site		
Vagina	22	60
Vulva	12	32
Cervix uterus	3	8
Prior treatment		
Surgery	9	24
Chemotherapy	3	8
None	25	68
T stage (including recurrent T stage)		
T1	8	22
T2	21	56
T3	8	22
Tumor size in maximal diameter		
≤30 mm	29	78
>30 mm	8	22
Lymph node metastasis		
Positive	5	14
Negative	32	86
The reason for inoperability		
Medically inoperable	27	73
Patient's refusal	10	27
Total dose of C-ion RT		
57.6 Gy (RBE) in 16 fractions	35	95
64.0 Gy (RBE) in 16 fractions	2	5
Adjuvant therapy		
DAV/DAV Feron	9	24
Nivolumab	1	3
None	27	73

- Retrospective analysis of 37 patients
- Median follow-up periods: 23 months (range: 5–103 months) for all patients and 53 months (range: 16–103 months) for survivors
- Mainly vaginal and vulvar tumors
- 9 were post-surgical recurrences and 3 women underwent chemotherapy before CIRT
- **35 pts up to a total dose of 57.6 GyE in 16 fractions**

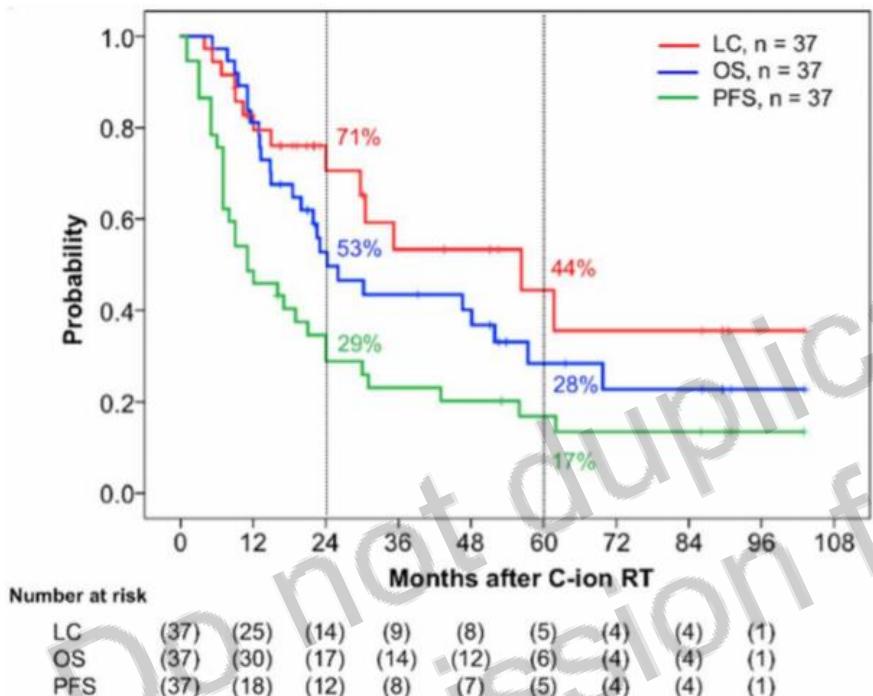
Current Evidence: role of hadrontherapy in gynecological malignancies


- Mucosal Malignant Melanoma and CIRT

- Within 6 months : 19 CR, 14 PR and 4 SD

Current Evidence: role of hadrontherapy in gynecological malignancies

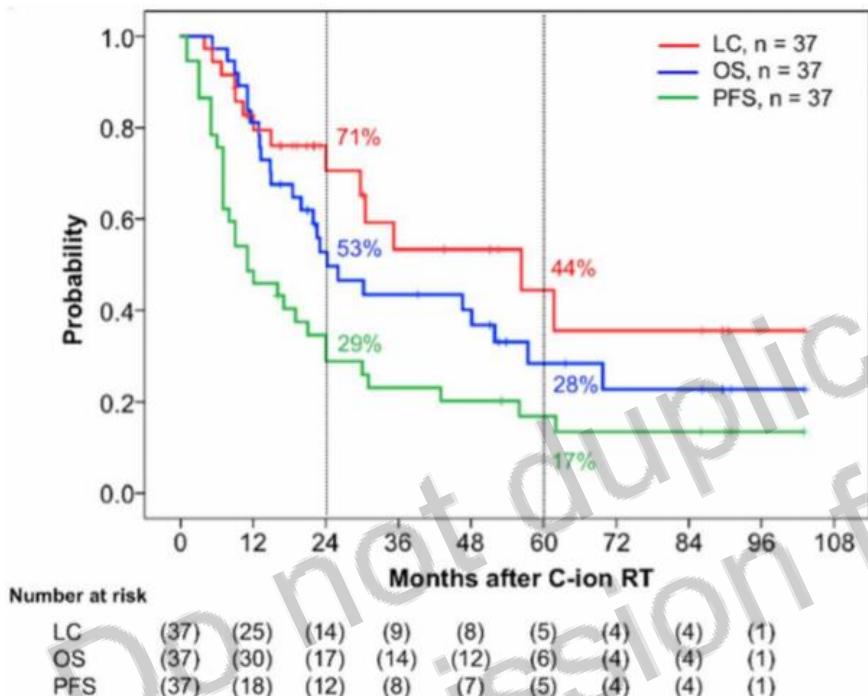
- Mucosal Malignant Melanoma and CIRT



- Within 6 months : 19 CR, 14 PR and 4 SD
- 30 of 37 patients (81%) achieved tumor disappearance following CIRT

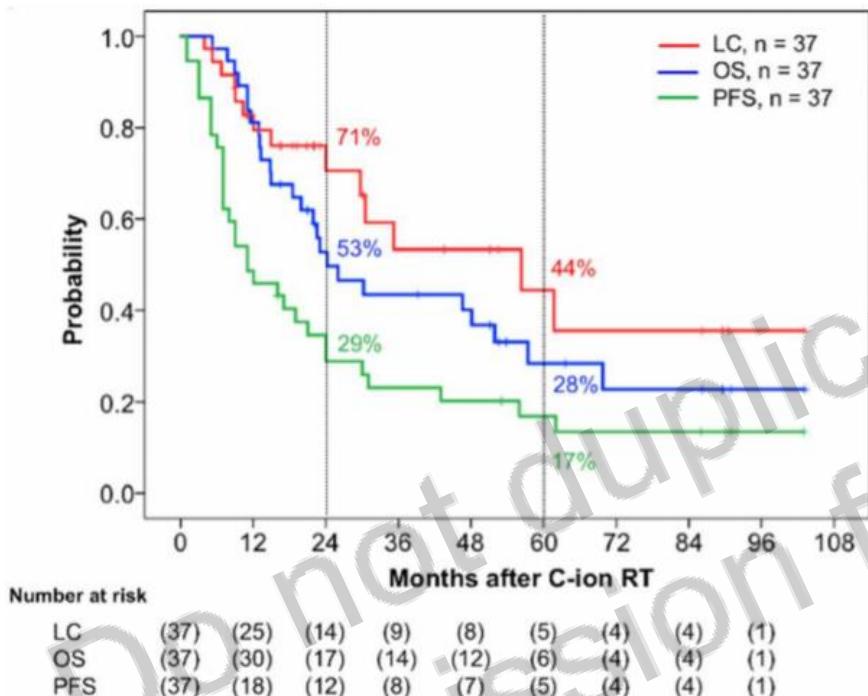
Murata H et al Long-Term Outcomes of Carbon-Ion Radiotherapy for Malignant Gynecological Melanoma. *Cancers (Basel)*. 2019 Apr 4;11(4)

Current Evidence: role of hadrontherapy in gynecological malignancies


- Mucosal Malignant Melanoma and CIRT

- Within 6 months : 19 CR, 14 PR and 4 SD
- 30 of 37 patients (81%) achieved tumor disappearance following CIRT
- 25 patients had died before the final follow-up date: 21 died from MM and 4 died from non-cancer-related reasons

Current Evidence: role of hadrontherapy in gynecological malignancies


- Mucosal Malignant Melanoma and CIRT

- Within 6 months : 19 CR, 14 PR and 4 SD
- 30 of 37 patients (81%) achieved tumor disappearance following CIRT
- 25 patients had died before the final follow-up date: 21 died from MM and 4 died from non-cancer-related reasons
- Promising 2-y LC and 2-y OS

Current Evidence: role of hadrontherapy in gynecological malignancies

- Mucosal Malignant Melanoma and CIRT

- Within 6 months : 19 CR, 14 PR and 4 SD
- 30 of 37 patients (81%) achieved tumor disappearance following CIRT
- 25 patients had died before the final follow-up date: 21 died from MM and 4 died from non-cancer-related reasons
- Promising 2-y LC and 2-y OS
- Acceptable toxicity rate

Acute Toxicity	CTCAE v.4 Scoring				
	Grade 0	Grade 1	Grade 2	Grade 3	Grade 4-5
Dermatitis/mucositis	2	18	14	3	0
Genitourinary toxicity	28	9	0	0	0
Lower gastrointestinal toxicity	17	14	6	0	0

Late toxicity	RTOG/EORTC Scoring				
	Grade 0	Grade 1	Grade 2	Grade 3	Grade 4-5
Dermatitis/mucositis	28	9	0	0	0
Genitourinary toxicity	30	3	4	0	0
Lower gastrointestinal toxicity	29	5	3	0	0

Murata H et al Long-Term Outcomes of Carbon-Ion Radiotherapy for Malignant Gynecological Melanoma. *Cancers (Basel)*. 2019 Apr 4;11(4)

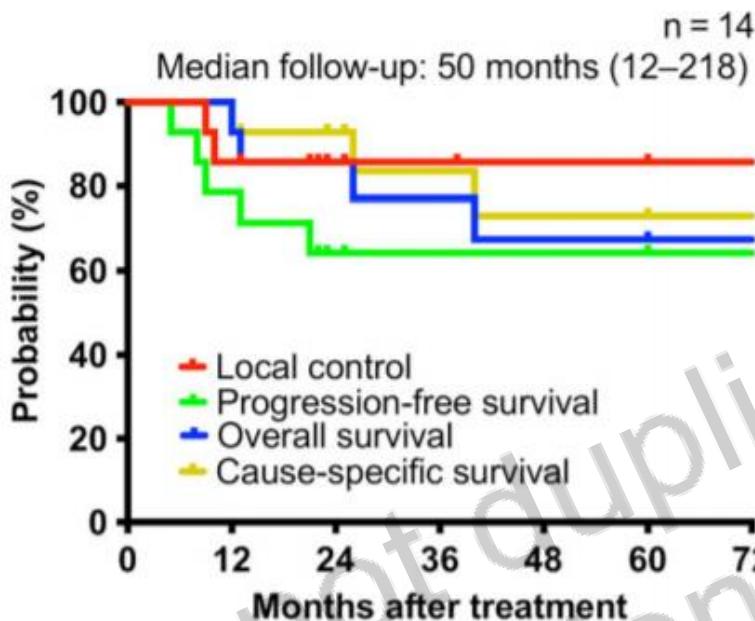
Current Evidence: role of hadrontherapy in gynecological malignancies

- Mucosal Malignant Melanoma and CIRT

Factor	No. of Patients	LC		PFS		OS		DM	
		2-Year (%)	p-Value						
Age (years)									
<71	17	49.7	0.213	17.6	0.617	57.0	0.983	52.9	0.041
≥71	20	89.2		39.4		43.3		40.1	
Prior treatment									
No	12	69.4	0.468	30.5	0.547	53.5	0.564	37.6	0.242
Yes	25	72.2		25.0		50.0		58.3	
T stage (including recurrence)									
T1-2	29	65.4	0.974	26.6		53.7		48.0	
T3	8	87.5		37.5		37.5		37.5	
Tumor diameter									
≤30 mm	29	73.9	0.337	33.4	0.418	57.2	0.304	46.3	0.320
>30 mm	8	60.0		12.5		37.5		37.5	
LN metastasis									
Positive	5	60.0	0.320	0.0		40.0		80.0	
Negative	32	73.0		40.4		54.9		39.1	
Adjuvant chemotherapy									
No	27	65.8	0.535	20.4	0.142	53.8	0.382	43.4	0.796
Yes	10	80.0		50.0		50.0		50.0	
Tumor response within 6 months after commencing C-ion RT									
CR	19	77.7	0.535	23.7	0.923	61.5		43.2	
Non-CR	18	61.6		33.3		43.2		45.8	
Primary site									
Vagina	22	73.4	N.S.	26.5	N.S.	55.2	N.S.	53.0	N.S.
Vulva	12	76.4		33.3		58.3		33.3	
Cervix uterus	3	33.3		33.3		33.3		33.3	

- None of the factors examined significantly influenced LC, PFS, and OS in univariate analysis

Current Evidence: role of hadrontherapy in gynecological malignancies

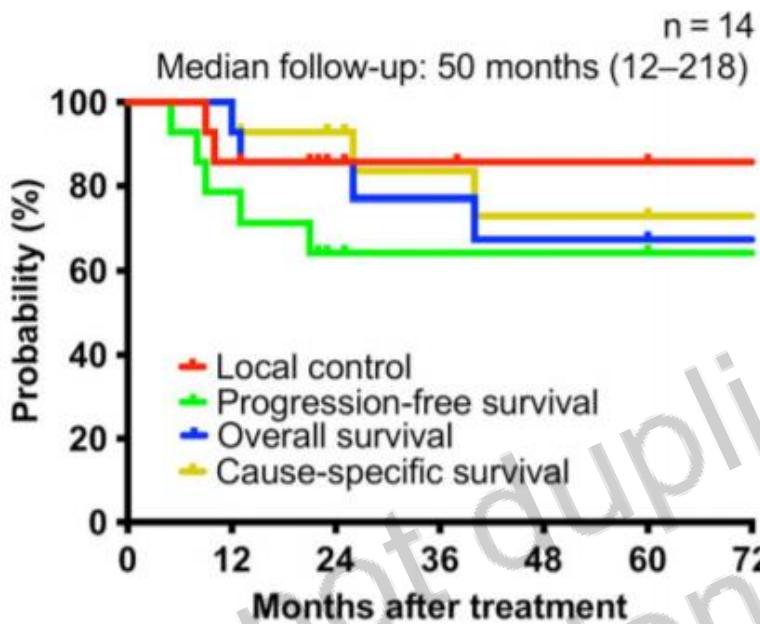

- Mucosal Malignant Melanoma and CIRT

Factor	No. of Patients	LC		PFS		OS		DM	
		2-Year (%)	p-Value						
Age (years)									
<71	17	49.7	0.213	17.6	0.617	57.0	0.983	52.9	
≥71	20	89.2		39.4		43.3		40.1	0.041
Prior treatment									
No	12	69.4	0.468	30.5	0.547	53.5	0.564	37.6	
Yes	25	72.2		25.0		50.0		58.3	0.242
T stage (including recurrence)									
T1-2	29	65.4	0.974	26.6		53.7	0.877	48.0	
T3	8	87.5		37.5		37.5		37.5	0.903
Tumor diameter									
≤30 mm	29	73.9	0.337	33.4	0.418	57.2	0.304	46.3	
>30 mm	8	60.0		12.5		37.5		37.5	0.320
LN metastasis									
Positive	5	60.0	0.320	0.0		40.0	0.069	80.0	
Negative	32	73.0		40.4		54.9		39.1	0.206
Adjuvant chemotherapy									
No	27	65.8	0.535	20.4	0.142	53.8	0.382	43.4	
Yes	10	80.0		50.0		50.0		50.0	0.796
Tumor response within 6 months after commencing C-ion RT									
CR	19	77.7	0.535	23.7	0.923	61.5	0.818	43.2	
Non-CR	18	61.6		33.3		43.2		45.8	0.826
Primary site									
Vagina	22	73.4	N.S.	26.5	N.S.	55.2	N.S.	53.0	
Vulva	12	76.4		33.3		58.3		33.3	0.041
Cervix uteru	3	33.3		33.3		33.3		33.3	

- None of the factors examined significantly influenced LC, PFS, and OS in univariate analysis
- Age was associated with the rate of distant metastasis: **younger group (age < 71 years) showed a higher incidence of distant metastasis than the elderly group (age ≥ 71 years) (p = 0.041)**

Current Evidence: role of hadrontherapy in gynecological malignancies

- Inoperable endometrial cancer



- pooled analysis of data from two trials
- 14 patients with stage \leq IIIC endometrial carcinoma
- medically inoperable because of comorbidities, age, or refusal of surgery
- total dose to the tumor was 62.4–74.4 GyE

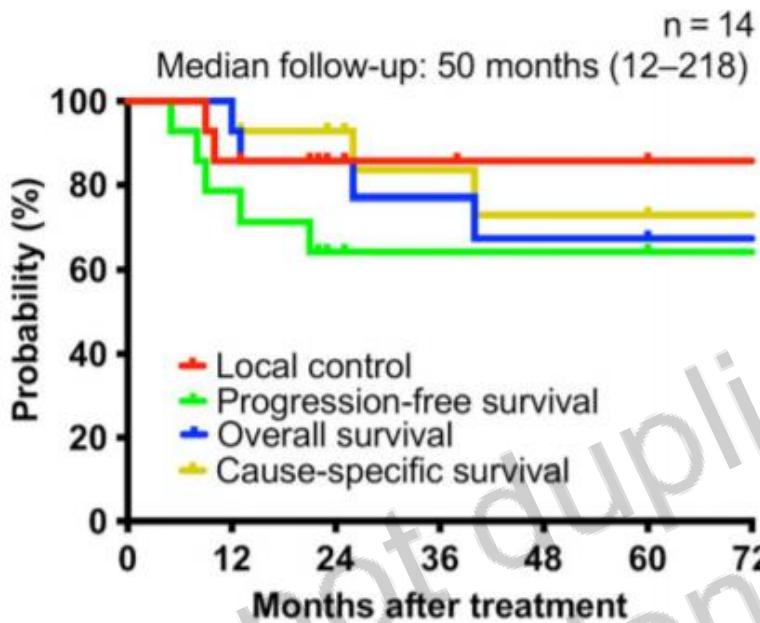
Irie D et al Carbon-ion radiotherapy for inoperable endometrial carcinoma. J Radiat Res. 2018 May 1;59(3):309-315.

Current Evidence: role of hadrontherapy in gynecological malignancies

- Inoperable endometrial cancer

- pooled analysis of data from two trials
- 14 patients with stage \leq IIIC endometrial carcinoma
- medically inoperable because of comorbidities, age, or refusal of surgery
- total dose to the tumor was 62.4–74.4 GyE

Table 3. Tumor response at 6 months after carbon-ion radiotherapy


Total dose [Gy (RBE)]	No.	Complete response	Partial response	Stable disease	Progressive disease
62.4	2	1	1	0	0
64.8	1	0	1	0	0
68.0	3	1	1	1	0
71.2	3	3	0	0	0
74.4	5	5	0	0	0
Total	14	10	3	1	0

- ✓ 2/6 patients receiving 62.4–68.0 GyE achieved CR
- ✓ 8/8 patients receiving 71.2–74.4 GyE achieved CR
($P = 0.015$)

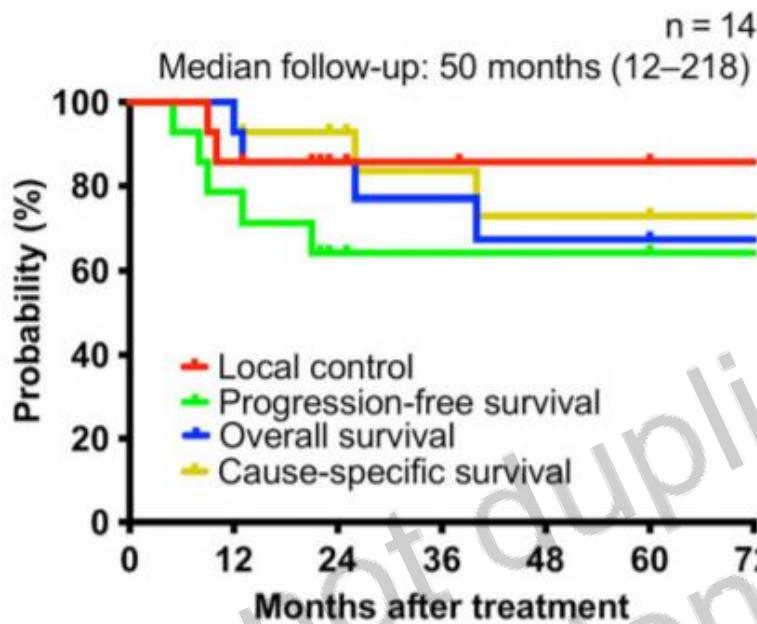
Irie D et al Carbon-ion radiotherapy for inoperable endometrial carcinoma. J Radiat Res. 2018 May 1;59(3):309-315.

Current Evidence: role of hadrontherapy in gynecological malignancies

- Inoperable endometrial cancer

No patient developed Grade 3 or higher acute or late toxicity.

- pooled analysis of data from two trials
- 14 patients with stage \leq IIIC endometrial carcinoma
- medically inoperable because of comorbidities, age, or refusal of surgery
- total dose to the tumor was 62.4–74.4 GyE


Table 3. Tumor response at 6 months after carbon-ion radiotherapy

Total dose [Gy (RBE)]	No.	Complete response	Partial response	Stable disease	Progressive disease
62.4	2	1	1	0	0
64.8	1	0	1	0	0
68.0	3	1	1	1	0
71.2	3	3	0	0	0
74.4	5	5	0	0	0
Total	14	10	3	1	0

- ✓ 2/6 patients receiving 62.4–68.0 GyE achieved CR
- ✓ 8/8 patients receiving 71.2–74.4 GyE achieved CR (P = 0.015)

Current Evidence: role of hadrontherapy in gynecological malignancies

- Inoperable endometrial cancer

No patient developed Grade 3 or higher acute or late toxicity.

5-y LC: 86%
 5 y- PFS: 64%
 5 y- OS : 68%

Table 3. Tumor response at 6 months after carbon-ion radiotherapy

Total dose [Gy (RBE)]	No.	Complete response	Partial response	Stable disease	Progressive disease
62.4	2	1	1	0	0
64.8	1	0	1	0	0
68.0	3	1	1	1	0
71.2	3	3	0	0	0
74.4	5	5	0	0	0
Total	14	10	3	1	0

- ✓ 2/6 patients receiving 62.4–68.0 GyE achieved CR
- ✓ 8/8 patients receiving 71.2–74.4 GyE achieved CR (P = 0.015)

Current Evidence: role of hadrontherapy in gynecological malignancies

- Re-irradiation for recurrence

- Retrospective series of **16 cases**
- Unresectable** recurrence at the edge of the previously irradiated field
- Median age 57 years (range=35-79 years)
- Median **tumor size was 27 mm** (range=14-80 mm)
- Total dose range: **48-57.6 GyE**

Case	Primary site, Stage	Histology	Initial treatment	Dose of prior RT	Duration of prior RT to C-ion RT (months)	Tumor size (mm)	Dose of C-ion RT	Recurrence
1	Cervical cancer, T2bN1M0	Squamous cell carcinoma	CCRT	50 Gy/25 fr.	26	33	48 Gy (RBE)/12 fr.	NER
2	Cervical cancer, T2aN0M0	Squamous cell carcinoma	RT alone	50 Gy/25 fr.	25	28	48 Gy (RBE)/12 fr.	NER
3	Endometrial cancer, T1N0M0	Endometrioid adenocarcinoma	Surgery	50 Gy/25 fr.	68	25	48 Gy (RBE)/12 fr.	NER
4	Cervical cancer, T4N0M0	Squamous cell carcinoma	CCRT	50 Gy/25 fr.	26	14	48 Gy (RBE)/12 fr.	LN metastasis
5	Cervical cancer, T1b1N0M0	Squamous cell carcinoma	Surgery	66 Gy/33 fr.	11	33	52.8 Gy (RBE)/12 fr.	NER
6	Endometrial cancer, T3aN0M0	Carcinosarcoma	Surgery	60 Gy/30 fr.	12	20	57.6 Gy (RBE)/12 fr.	LN metastasis
7	Cervical cancer, T3bN1M0	Squamous cell carcinoma	Surgery	50 Gy/25 fr.	17	15	52.8 Gy (RBE)/12 fr.	Local recurrence, LN and Lung metastases
8	Cervical cancer, T2bN1M0	Squamous cell carcinoma	CCRT	50.6 Gy/27 fr.	33	24	57.6 Gy (RBE)/12 fr.	LN metastasis
9	Endometrial cancer, T3bN1M0	Endometrioid adenocarcinoma	Surgery	50 Gy/25 fr.	20	80	57.6 Gy (RBE)/16 fr	Local recurrence
10	Cervical cancer, T2aN0M0	Squamous cell carcinoma	CCRT	46 Gy/23 fr.	77	30	52.8 Gy (RBE)/12 fr.	NER
11	Ovarian cancer, T1bN0M0	Serous adenocarcinoma	Surgery	56 Gy/28 fr.	40	18	52.8 Gy (RBE)/12 fr.	Lung metastasis
12	Endometrial cancer, T3aN0M0	Endometrioid adenocarcinoma	Surgery	50 Gy/25 fr.	130	22	52.8 Gy (RBE)/12 fr.	NER
13	Endometrial cancer, T1bN0M0	Small cell carcinoma	Surgery	54 Gy/27 fr.	17	75	52.8 Gy (RBE)/12 fr.	Lung metastasis
14	Cervical cancer, T1bN0M0	Mucinous adenocarcinoma	Surgery	50.4 Gy/28 fr.	21	38	57.6 Gy (RBE)/12 fr.	NER
15	Endometrial cancer, T1bN0M0	Endometrioid adenocarcinoma	Surgery	58.6 Gy/32 fr.	29	42	52.8 Gy (RBE)/12 fr.	Liver metastasis
16	Cervical cancer, T1bN1M0	Squamous cell carcinoma	Surgery	50 Gy/25 fr.	64	20	52.8 Gy (RBE)/12 fr.	NER

CCRT, Concurrent chemoradiotherapy; C-ion RT, carbon-ion radiotherapy; fr., fractions; LN, lymph node; NER, no evidence of recurrence; RT, radiotherapy.

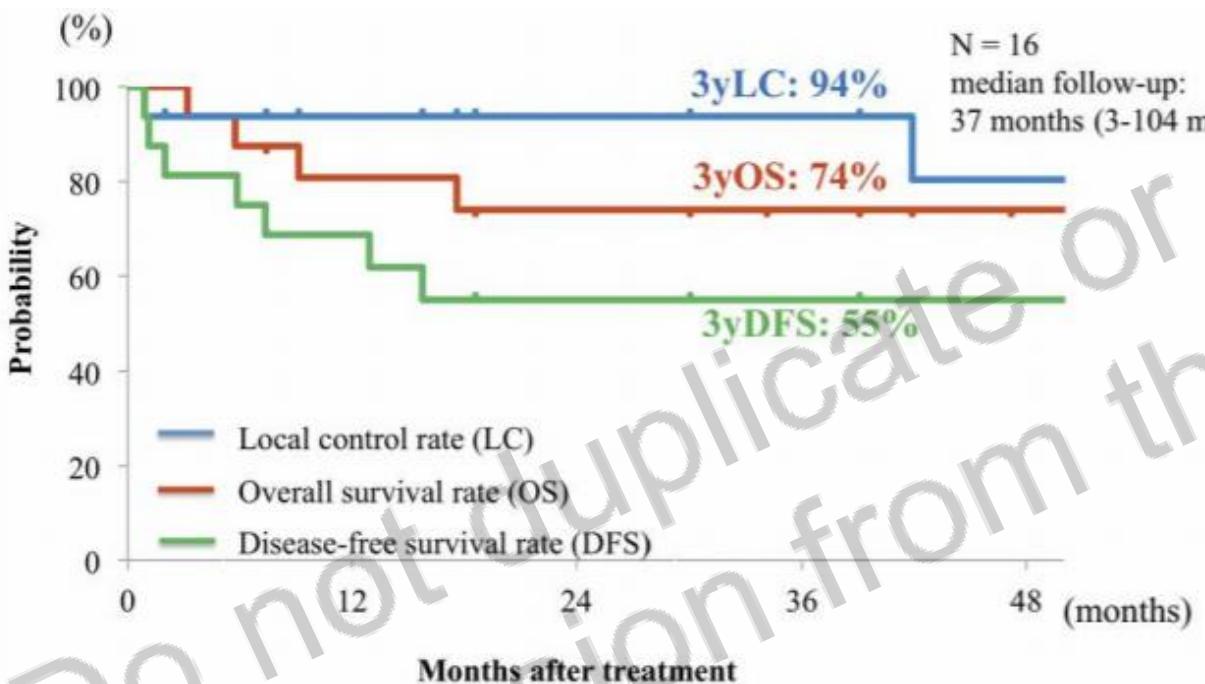
Shiba S et al Clinical Impact of Re-irradiation with Carbon-ion Radiotherapy for Lymph Node Recurrence of Gynecological Cancers. Anticancer Res. 2017 Oct;37(10):5577-5583

Current Evidence: role of hadrontherapy in gynecological malignancies

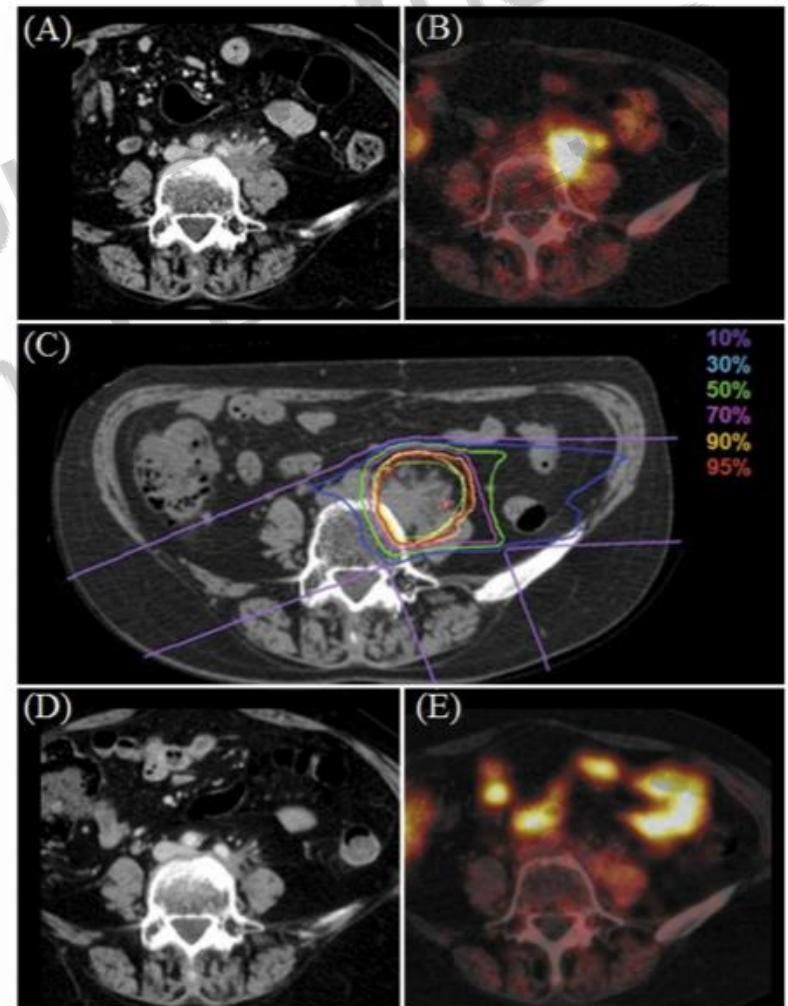
- Re-irradiation for recurrence
- Retrospective series of **16 cases**
- **Unresectable** recurrence at the edge of the previously irradiated field
- Median age 57 years (range=35-79 years)
- Median **tumor size was 27 mm** (range=14-80 mm)
- Total dose range: **48-57.6 GyE**

Organs involved	G0	G1	G2	G3	G4
Gastrointestinal tract	14	2	0	0	0
Urinary tract	15	1	0	0	0
Leg edema	15	0	1	0	0
Lower extremity nerve	14	2	0	0	0

RTOG/EORTC, Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer.


Case	Primary site, Stage	Histology	Initial treatment	Dose of prior RT	Duration of prior RT to C-ion RT (months)	Tumor size (mm)	Dose of C-ion RT	Recurrence
1	Cervical cancer, T2bN1M0	Squamous cell carcinoma	CCRT	50 Gy/25 fr.	26	33	48 Gy (RBE)/12 fr.	NER
2	Cervical cancer, T2aN0M0	Squamous cell carcinoma	RT alone	50 Gy/25 fr.	25	28	48 Gy (RBE)/12 fr.	NER
3	Endometrial cancer, T1N0M0	Endometrioid adenocarcinoma	Surgery	50 Gy/25 fr.	68	25	48 Gy (RBE)/12 fr.	NER
4	Cervical cancer, T4N0M0	Squamous cell carcinoma	CCRT	50 Gy/25 fr.	26	14	48 Gy (RBE)/12 fr.	LN metastasis
5	Cervical cancer, T1b1N0M0	Squamous cell carcinoma	Surgery	66 Gy/33 fr.	11	33	52.8 Gy (RBE)/12 fr.	NER
6	Endometrial cancer, T3aN0M0	Carcinosarcoma	Surgery	60 Gy/30 fr.	12	20	57.6 Gy (RBE)/12 fr.	LN metastasis
7	Cervical cancer, T3bN1M0	Squamous cell carcinoma	Surgery	50 Gy/25 fr.	17	15	52.8 Gy (RBE)/12 fr.	Local recurrence, LN and Lung metastases
8	Cervical cancer, T2bN1M0	Squamous cell carcinoma	CCRT	50.6 Gy/27 fr.	33	24	57.6 Gy (RBE)/12 fr.	LN metastasis
9	Endometrial cancer, T3bN1M0	Endometrioid adenocarcinoma	Surgery	50 Gy/25 fr.	20	80	57.6 Gy (RBE)/16 fr	Local recurrence
10	Cervical cancer, T2aN0M0	Squamous cell carcinoma	CCRT	46 Gy/23 fr.	77	30	52.8 Gy (RBE)/12 fr.	NER
11	Ovarian cancer, T1bN0M0	Serous adenocarcinoma	Surgery	56 Gy/28 fr.	40	18	52.8 Gy (RBE)/12 fr.	Lung metastasis
12	Endometrial cancer, T3aN0M0	Endometrioid adenocarcinoma	Surgery	50 Gy/25 fr.	130	22	52.8 Gy (RBE)/12 fr.	NER
13	Endometrial cancer, T1bN0M0	Small cell carcinoma	Surgery	54 Gy/27 fr.	17	75	52.8 Gy (RBE)/12 fr.	Lung metastasis
14	Cervical cancer, T1bN0M0	Mucinous adenocarcinoma	Surgery	50.4 Gy/28 fr.	21	38	57.6 Gy (RBE)/12 fr.	NER
15	Endometrial cancer, T1bN0M0	Endometrioid adenocarcinoma	Surgery	58.6 Gy/32 fr.	29	42	52.8 Gy (RBE)/12 fr.	Liver metastasis
16	Cervical cancer, T1bN1M0	Squamous cell carcinoma	Surgery	50 Gy/25 fr.	64	20	52.8 Gy (RBE)/12 fr.	NER

CCRT, Concurrent chemoradiotherapy; C-ion RT, carbon-ion radiotherapy; fr., fractions; LN, lymph node; NER, no evidence of recurrence; RT, radiotherapy.


Shiba S et al Clinical Impact of Re-irradiation with Carbon-ion Radiotherapy for Lymph Node Recurrence of Gynecological Cancers. Anticancer Res. 2017 Oct;37(10):5577-5583

Current Evidence: role of hadrontherapy in gynecological malignancies

- Re-irradiation for recurrence

Two patients had local recurrence, and 7 patients had distant metastases

Shiba S et al Clinical Impact of Re-irradiation with Carbon-ion Radiotherapy for Lymph Node Recurrence of Gynecological Cancers. Anticancer Res. 2017 Oct;37(10):5577-5583

Agenda

- Introduction: what is hadrontherapy?
- Rationale of hadrontherapy
- Current Evidence: role of hadrontherapy in gynecological malignancies
- Conclusions: Take Home Messages

Conclusions: Take home messages

- Hadrontherapy appears to be a safe, effective and feasible treatment method, which has shown advantages over photon therapy

Conclusions: Take home messages

- Hadrontherapy appears to be a safe, effective and feasible treatment method, which has shown advantages over photon therapy
- For locally advanced cervical cancer CIRT provides good outcome in patients receiving pelvic CIRT, prophylactic extended-field CIRT and concurrent chemotherapy

Conclusions: Take home messages

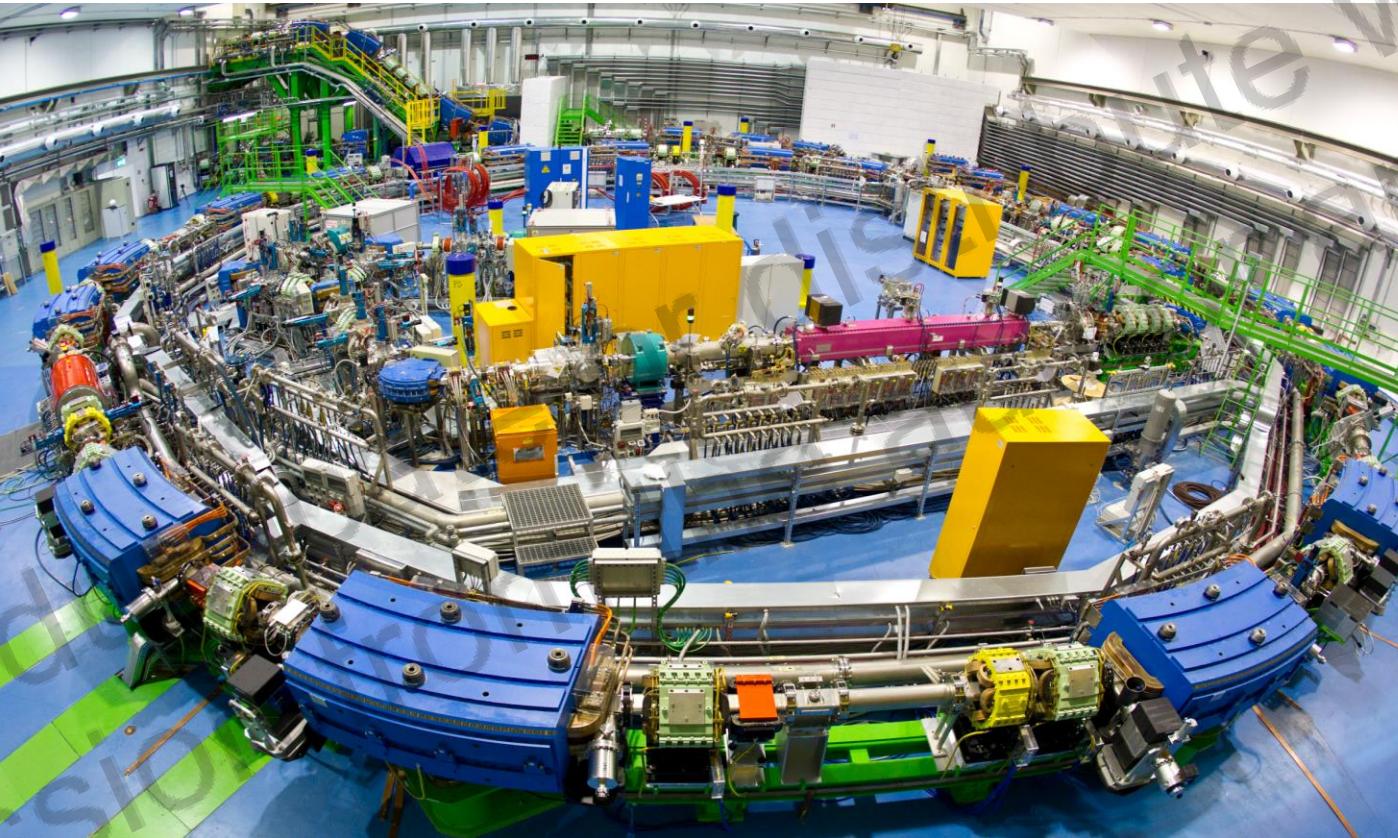
- Hadrontherapy appears to be a safe, effective and feasible treatment method, which has shown advantages over photon therapy
- For locally advanced cervical cancer CIRT provides good outcome in patients receiving pelvic CIRT, prophylactic extended-field CIRT and concurrent chemotherapy
- CIRT seems to improve outcome in adenocarcinoma cervical cancer compared to photon beam RT

Conclusions: Take home messages

- Hadrontherapy appears to be a safe, effective and feasible treatment method, which has shown advantages over photon therapy
- For locally advanced cervical cancer CIRT provides good outcome in patients receiving pelvic CIRT, prophylactic extended-field CIRT and concurrent chemotherapy
- CIRT seems to improve outcome in adenocarcinoma cervical cancer compared to photon beam RT
- **Prospective and randomized clinical trials are warranted!**

Conclusions: Take home messages

- The results of inoperable endometrial carcinomas and gynecological melanomas have a similar therapeutic effectiveness to that of surgery


Conclusions: Take home messages

- The results of inoperable endometrial carcinomas and gynecological melanomas have a similar therapeutic effectiveness to that of surgery
- For their radiobiological and ballistic hallmarks re-irradiation with CIRT could meet expectations as a curative treatment option

Conclusions: Take home messages

- The results of inoperable endometrial carcinomas and gynecological melanomas have a similar therapeutic effectiveness to that of surgery
- For their radiobiological and ballistic hallmarks re-irradiation with CIRT could meet expectations as a curative treatment option
- A strong collaboration between Researchers and Physicians treating rare and radioresistant histologies as well as difficult-to-cure patients is of utmost importance to make a step forward in the treatment of these diseases

Thank you for your attention

“True progress is when the advantages of new technology are available for all”

H. Ford